Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{1}{5.7}+....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}+0+0+...+0\)
\(=\frac{100}{101}\)
2A=2/3.5+2/5.7+2/7.9+...+2/99.101=>2A=1/3-1/5+1/5-1/7+...+1/99-1/100=>2A=1/3-1/100=>2A=97/300=>A=97/600
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\)
\(=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
Giải:
\(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)
\(=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(=\dfrac{1}{1}-\dfrac{1}{13}\)
\(=\dfrac{12}{13}\)
Chúc em học tốt!
2/3+2/15+2/35+2/63+2/99+2/143
=2(1/1x3+1/3x5+1/5x7+1/7x9+1/9x11+1/11x13)
=2(1-1/3+1/3-1/5+1/5-....+1/13)
=2(1-1/13)
=2.12/13=24/13
Bài làm :
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\)
\(=2\times\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=2\times\left(1-\frac{1}{11}\right)\)
\(=2\times\frac{10}{11}\)
\(=\frac{20}{11}\)
Học tốt nhé
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
siêu tốc
\(2000+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)=2000+\frac{50}{3.101}\)
Ta có: \(2000+\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
=\(2000+\left(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{99x101}\right)\)
Đặt A=\(\left(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{99x101}\right)\)
=> 2xA =\(\left(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{99x101}\right)\)
2xA = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
2xA = \(\frac{1}{3}-\frac{1}{101}\)
2xA = \(\frac{98}{303}\)
A = \(\frac{98}{606}=\frac{49}{303}\)
=> \(2000+\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)=2000+\frac{49}{303}=\frac{606049}{303}\)
Bạn xem rút gọn được thì rút nhé
1/3 + 1/15 + 1/35 + 1/63 + 1/99 + 9999
= 1/3 + ( 1/5 + 1/35 + 1/63 ) + 1/99 = 9999
= 1/3 + 1111/9999 + 1/99
= 3333/9999 + 1111/9999 +101/9999
= 4545/9999
2/3+2/15+2/35+2/63+...+2/9999
=2/1.3+2/3.5+2/5.7+...+2/99x101
=1-1/3+1/3-1/5+...+1/99-1/101
=1-1/101=100/101
\(=2\times\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(=2\times\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{99\times101}\right)\)
\(=2\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2\times\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(=2\times\frac{100}{101}\)
\(=\frac{200}{101}\)