Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{2^6\cdot3^{10}}{3^9\cdot2^6}=3\\ D=\dfrac{3^{24}\cdot3^{10}}{3^{21}\cdot3^{11}}=\dfrac{3^{34}}{3^{32}}=3^2=9\\ F=\dfrac{2^{45}\cdot5^{14}}{5^{15}\cdot2^{47}}=\dfrac{1}{2^2\cdot5}=\dfrac{1}{20}\\ G=\dfrac{2^2\cdot5^2\cdot5^3}{2^3\cdot5^4}=\dfrac{1\cdot5}{2}=\dfrac{5}{2}\)
C=3
D=9
F=1/20
G=5/2
Em ko giải chi tiết vì nó lâu
Mong thông cảm!
2, 100^2+200^2+300^2+..+1000^2
=100^2+2^2×100^2+3^2×100^2+...+100^2×10^2
=100^2×( 1^2+2^2+3^2+..+10^2)
=100^2×385
= 3850000
P/s : mk làm từng phần một
\(\left(\frac{2}{3}\right)^x=\frac{8}{27}=\left(\frac{2}{3}\right)^3\)
=> x = 3
Vậy,........
2)
\(\left(\frac{5}{6}x+\frac{1}{2}\right)^2=\frac{9}{16}=\left(\frac{3}{4}\right)^2\)
\(\frac{5}{6}x+\frac{1}{2}=\frac{3}{4}\)
\(\frac{5}{6}x=\frac{1}{4}\)
\(x=\frac{3}{10}\)
\(a,\dfrac{5^{16}\cdot27^7}{125^5\cdot9^{11}}=\dfrac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}\)
\(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)
\(b,\left(-0,2\right)^2\cdot5-\dfrac{2^{13}\cdot27^3}{4^6\cdot9^5}\)
\(=0,04\cdot5-\dfrac{2^{13}\cdot\left(3^3\right)^3}{\left(2^2\right)^6\cdot\left(3^2\right)^5}\)
\(=0,2-\dfrac{2^{13}\cdot3^9}{2^{12}\cdot3^{10}}\)
\(=0,2-\dfrac{2}{3}\)
\(=-\dfrac{7}{15}\)
\(c,\dfrac{5^6+2^2\cdot25^3+2^3\cdot125^2}{26\cdot5^6}\)
\(=\dfrac{5^6+2^2\cdot\left(5^2\right)^3+2^3\cdot\left(5^3\right)^2}{5^6\cdot26}\)
\(=\dfrac{5^6+4\cdot5^6+8\cdot5^6}{5^6\cdot26}\)
\(=\dfrac{5^6\left(1+4+8\right)}{5^6\cdot26}\)
\(=\dfrac{13}{26}\)
\(=\dfrac{1}{2}\)
#\(Toru\)
\(a,\dfrac{5^{16}.27^7}{125^5.9^{11}}=\dfrac{\left(5^2\right)^8.9^7.3^7}{25^5.5^5.9^{11}}\\ =\dfrac{25^8.9^7.\left(3^2\right)^3.3}{25^5.\left(5^2\right)^2.5.9^{11}}=\dfrac{25^8.9^7.9^3.3}{25^5.25^2.5.9^{11}}\\ =\dfrac{25^8.9^{10}.3}{25^7.5.9^{11}}=\dfrac{25^7.9^{10}.25.3}{25^7.9^{10}.5.9}\\ =\dfrac{25.3}{5.9}=\dfrac{5.5.3}{5.3.3}=\dfrac{5}{3}\)
\(\dfrac{8^2.125.9^2-32.5^3.81}{20^3.3^4-6^8.5^4}\)
\(=\dfrac{2^6.5^3.3^4-2^5.5^3.3^4}{4^3.5^3.3^4-2^8.3^8.5^4}\)
\(=\dfrac{2^6.5^3.3^4-2^5.5^3.3^4}{2^6.5^3.3^4-2^8.3^8.5^4}\)
\(=\dfrac{2^5.5^3.3^4\left(2-1\right)}{2^6.5^3.3^4\left(1-2^2.3^4.5\right)}\)
\(=\dfrac{2^5.5^3.3^4.1}{2^6.5^3.3^4\left(1-810\right)}\)
\(=\dfrac{1}{2.\left(-809\right)}\)
\(=-\dfrac{1}{1618}\)