Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{99\cdot101}{100\cdot100}\)
\(\frac{1\cdot101}{2\cdot100}\)
\(\frac{101}{200}\)
TA CÓ ;
\(A=\frac{3}{4}.\frac{8}{9}...\frac{2499}{2500}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{49.51}{50.50}\)
\(A=\frac{1.3.2.4...49.51}{2.2.3.3...50.50}\)
\(A=\frac{\left(1.2...49\right).\left(3.4...51\right)}{\left(2.3...50\right).\left(2.3...50\right)}\)
\(A=\frac{1.51}{50.2}=\frac{51}{100}\)
VẬY \(A=\frac{51}{100}\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{2499}{2500}=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\frac{49.51}{50.50}\)
\(=\frac{1.2.3....49}{2.3.4...50}\cdot\frac{3.4.5...51}{2.3.4...50}=\frac{1}{50}\cdot\frac{51}{2}=\frac{51}{100}\)
A= 3/4x8/9x15/16x.......x 2499/2500
A=\(\frac{3}{4}x\frac{2.4}{3.3}x\frac{3.5}{4.4}x...x\frac{49.51}{50.50}\)
A=\(\frac{3x2x4x3x5x...x49x51}{4x3x3x4x4x...x50x50}\)
A=\(\frac{2x51}{4x50}\)
A=\(\frac{51}{100}\)
A= \(=\frac{3\times1}{2\times2}\times\frac{4\times2}{3\times3}\times\frac{3\times5}{4\times4}\times....\times\frac{49\times51}{50\times50}\)
\(=\frac{3\times1\times4\times2\times3\times5\times....\times49\times51}{2\times2\times3\times3\times4\times4\times....\times50\times50}\)
xong loai di nhung so o dang trc va nhan vs 51/50 va ra kq
xin loi vik ko lam het vik qua ban mong chon mik
Giải:
\(C=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{9999}{10000}\)
Đặt \(B=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{10000}{10001}\)
Do \(\dfrac{1}{2}< \dfrac{2}{3};\dfrac{3}{4}< \dfrac{4}{5};...;\dfrac{9999}{10000}< \dfrac{10000}{10001}\)
Nên \(C< B\) Mà \(\left\{{}\begin{matrix}C>0\\B>0\end{matrix}\right.\)
\(\Rightarrow C^2< C.B=\left(\dfrac{1}{2}.\dfrac{3}{4}...\dfrac{9999}{10000}\right)\)\(\left(\dfrac{2}{3}.\dfrac{4}{5}...\dfrac{10000}{10001}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{9999}{10000}.\dfrac{10000}{10001}\)
\(=\dfrac{1.2.3.4.5.6...9999.10000}{2.3.4.5.6.7....10000.10001}\)
\(=\dfrac{1}{10001}< \dfrac{1}{10000}=\dfrac{1}{100}.\dfrac{1}{100}=\left(\dfrac{1}{100}\right)^2\)
\(\Rightarrow C^2< \left(\dfrac{1}{100}\right)^2\Leftrightarrow C< \dfrac{1}{100}\)
Vậy \(C=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{9999}{10000}< \dfrac{1}{100}\) (Đpcm)
\(C=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{9999}{10000}\)(1)
Ta có : \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
................
\(\frac{9999}{10000}< \frac{10000}{10001}\)
\(\Rightarrow C< \frac{2}{3}\times\frac{4}{5}\times\frac{6}{7}\times...\times\frac{10000}{10001}\)(2)
Từ (1) và (2) \(\Rightarrow C^2< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times\frac{5}{6}\times\frac{6}{7}\times...\times\frac{9999}{10000}\times\frac{10000}{10001}\)
\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}=\left(\frac{1}{100}\right)^2\)
\(\Rightarrow C< \frac{1}{100}\)(đpcm)
= 3/4 x 8/9 x 15/16 x ... x 9999/10000
= 3 x 8 x 15 x ... x 9999/ 4 x 9 x 16 x ... x 10000
= (1 x 3) x (2 x 4) x (3 x 5) x ... x (99 x 101)/ (2 x 2) x (3 x 3) x (4 x 4) x ... x (100 x 100)
= (1 x 2 x 3 x ... x 99) x (3 x 4 x 5 x ... x 101)/ (2 x 3 x 4 x ... x 100) x (2 x 3 x 4 x ... x 100)
= (1 x 2 x 3 x ... x 99) x (3 x 4 x 5 x ... x 101)/ (2 x 3 x 4 x ... x 100) x (2 x 3 x 4 x ... x 100)
= 1x 101/ 100 x 2
= 101/200
CHÚC BN HOK TỐT ^^