K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

Với -1<x<0 ta có:

\(\left(x^3+1\right)\sqrt{\dfrac{3x}{x^2-1}}=\left(x+1\right)\left(x^2-x+1\right)\sqrt{\dfrac{3x}{\left(x-1\right)\left(x+1\right)}}\)

\(=\sqrt{x+1}\left(x^2-x+1\right)\sqrt{\dfrac{3x}{x-1}}\)

\(\Rightarrow\lim\limits_{x\rightarrow\left(-1\right)^+}\left(x^3+1\right)\sqrt{\dfrac{3x}{x^2-1}}=0\)

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Bạn có thể giải thích tại sao sau loạt phân tích bạn lại suy ra được dòng cuối cùng không?

9 tháng 2 2021

Da nan roi mang meo lam mat het bai -.-

1/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{\dfrac{3x^3}{x^3}+\dfrac{1}{x^3}}+\sqrt{\dfrac{2x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}{-\sqrt[4]{\dfrac{4x^4}{x^4}+\dfrac{2}{x^4}}}=\dfrac{-\sqrt[3]{3}-\sqrt{2}}{\sqrt[4]{4}}\)

2/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{8x^7}{\left(-2x^7\right)}=-\dfrac{8}{2^7}\)

3/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(4x^2-3x+4-4x^2\right)\left(\sqrt{x^2+x+1}+x\right)}{\left(x^2+x+1-x^2\right)\left(\sqrt{4x^2-3x+4}+2x\right)}=\dfrac{-3.2}{2}=-3\)

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

Lời giải:

a) \(\lim\limits_{x\to -\infty}\frac{x+3}{3x-1}=\lim\limits_{x\to -\infty}\frac{1+\frac{3}{x}}{3-\frac{1}{x}}=\frac{1}{3}\)

b) 

\(\lim\limits_{x\to +\infty}\frac{(\sqrt{x^2+1}+x)^n-(\sqrt{x^2+1}-x)^n}{x}=\lim\limits_{x\to +\infty} 2[(\sqrt{x^2+1}+x)^{n-1}+(\sqrt{x^2+1}+x)^{n-1}(\sqrt{x^2+1}-x)+....+(\sqrt{x^2+1}-x)^{n-1}]\)

\(=+\infty\)

7 tháng 11 2023

Em là tám lại ạ

Em là duy khôi ạ

Em là văn tam ạ

Em là mạnh Tuấn ạ

 

a: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x-2}-\dfrac{12}{x^3-8}\right)\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x+4-12}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+2x-8}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x+4}{x^2+2x+4}\)

\(=\dfrac{2+4}{2^2+2\cdot2+4}=\dfrac{6}{4+4+4}=\dfrac{6}{12}=\dfrac{1}{2}\)

b: \(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}\right)\)

\(=\lim\limits_{x\rightarrow2}\left(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}\right)\)

\(=\lim\limits_{x\rightarrow2}\left(\dfrac{x-3+x-1}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\right)\)

\(=\lim\limits_{x\rightarrow2}\dfrac{2x-4}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{2}{\left(x-3\right)\left(x-1\right)}=\dfrac{2}{\left(2-3\right)\left(2-1\right)}=-2\)

d: \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-\sqrt[3]{x^3-1}\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+1}-x+x-\sqrt[3]{x^3-1}\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}+\dfrac{x^3-x^3+1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{x^2+1}+x}+\dfrac{1}{\sqrt[3]{x^2}+x\cdot\sqrt[3]{x^3-1}+\sqrt[3]{\left(x^3-1\right)^2}}\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\dfrac{1}{x}}{\sqrt{1+\dfrac{1}{x^2}}+1}+\dfrac{\dfrac{1}{x^2}}{\sqrt[3]{\dfrac{1}{x^4}}+\sqrt[3]{1-\dfrac{1}{x^3}}+\sqrt[3]{\left(1-\dfrac{1}{x^3}\right)^2}}\right)\)

=0

c: \(\lim\limits_{x\rightarrow+\infty}\left[x\cdot\left(\sqrt{x^2+1}-x\right)\right]\)

\(=\lim\limits_{x\rightarrow+\infty}\left[x\cdot\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}\right]\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{x}{\sqrt{x^2+1}+x}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)

e: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x^2+1-1}{\sqrt{x^2+1}+1}:\dfrac{x^2+16-16}{\sqrt{x^2+16}+4}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+16}+4}{\sqrt{x^2+1}+1}=\dfrac{4+4}{1+1}=\dfrac{8}{2}=4\)

9 tháng 2 2021

1/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2-x^2-x-x}{x+\sqrt{x^2+x+1}}=\dfrac{-2}{1-1}=-\infty\)

2/ tien toi +- vo cung?

3/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{8x^3+2x-8x^3}{\sqrt[3]{\left(8x^3+2x\right)^2}+2x.\sqrt[3]{8x^3+2x}+4x^2}=\dfrac{\dfrac{2x}{x^2}}{\dfrac{4x^2}{x^2}+\dfrac{4x^2}{x^2}+\dfrac{4x^2}{x^2}}=0\)

4/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{16x^4+3x+1-16x^4}{\sqrt[4]{\left(16x^4+3x+1\right)^3}+2x.\sqrt[4]{\left(16x^4+3x+1\right)^2}+4x^2.\sqrt[4]{16x^4+3x+1}+8x^3}+\lim\limits_{x\rightarrow+\infty}\dfrac{4x^2-4x^2-2}{2x+\sqrt{4x^2+2}}=\dfrac{\dfrac{3x}{x^3}}{8+8+8+8}-\dfrac{\dfrac{2}{x}}{2+2}=0\)

5/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}+x}+\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-x-x^2}{\sqrt{x^2-x}+x}=\dfrac{\dfrac{1}{x}}{1+1}-\dfrac{\dfrac{x}{x}}{1+1}=-\dfrac{1}{2}\)

27 tháng 1 2021

a/ \(=\lim\limits_{x\rightarrow-\infty}x^3\left(3+\dfrac{5x^2}{x^3}-\dfrac{9\sqrt{2}x}{x^3}-\dfrac{2017}{x^3}\right)=3.x^3=-\infty\)

b/ \(=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{1+\dfrac{x}{x^2}+\dfrac{1}{x^2}}-\sqrt[3]{2+\dfrac{x}{x^3}-\dfrac{1}{x^3}}\right)=\left(1-\sqrt[3]{2}\right)x=-\infty\)

c/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2-x^2-x-1}{x+\sqrt{x^2+x+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\dfrac{x}{x}-\dfrac{1}{x}}{\dfrac{x}{x}-\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}=-\dfrac{1}{1-1}=-\infty\)

d/ \(=\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+x^2+1}-x\right)+\lim\limits_{x\rightarrow-\infty}\left(x+\sqrt{x^2+x+1}\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3+x^2+1-x^3}{\left(\sqrt[3]{x^3+x^2+1}\right)^2+x\sqrt[3]{x^3+x^2+1}-x^2}+\lim\limits_{x\rightarrow-\infty}\dfrac{x^2-x^2-x-1}{x-\sqrt{x^2+x+1}}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1}{\left(-x\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{x^2}{x^3}+\dfrac{1}{x^3}}\right)^2-x.x\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{x^2}{x^3}+\dfrac{1}{x^3}}-x^2}+\lim\limits_{x\rightarrow-\infty}\dfrac{-x-1}{x+x\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}\)

\(=\dfrac{1}{1-1-1}+\dfrac{-1}{1+1}=-1-\dfrac{1}{2}=-\dfrac{3}{2}\)

9 tháng 2 2021

Hic nan qua :( Lam vay

P/s: Anh Lam check all ho em nhung bai em lam nhe :( Em cam on

1/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-x+1-x^2}{\sqrt{x^2-x+1}+x}=\dfrac{-1}{1+1}=-\dfrac{1}{2}\)

2/ \(=\lim\limits_{x\rightarrow-\infty}x\left(\dfrac{4x^2+1-x^2}{\sqrt{4x^2+1}+x}\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{x}{x}}{-\sqrt{\dfrac{4x^2}{x^2}+\dfrac{1}{x^2}}+\dfrac{x}{x}}=\dfrac{1}{-2+1}=-1\)

3/ \(=\lim\limits_{x\rightarrow-\infty}x^5\left(4-\dfrac{3}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^5}\right)=-\infty\)

4/ \(=\lim\limits_{x\rightarrow+\infty}\sqrt{x^4}\left(\sqrt{1-\dfrac{x^3}{x^4}+\dfrac{x^2}{x^4}-\dfrac{x}{x^4}}\right)=+\infty\)

 

NV
23 tháng 1 2021

Do \(\lim\limits_{x\rightarrow-1}\dfrac{2f\left(x\right)+1}{x+1}=5\) hữu hạn nên \(2f\left(x\right)+1=0\) phải có nghiệm \(x=-1\)

\(\Leftrightarrow2f\left(-1\right)=-1\Leftrightarrow f\left(-1\right)=-\dfrac{1}{2}\)

Đoạn dưới tự hiểu là \(\lim\limits_{x\rightarrow-1}\) (vì kí tự lim rất rắc rối)

\(I=\dfrac{\left[4f\left(x\right)+3\right]\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}-2\right]+2\left[4f\left(x\right)+3\right]-2}{x^2-1}\)

\(=\dfrac{\left[4f\left(x\right)+3\right]\left[4f^2\left(x\right)+2f\left(x\right)\right]}{\left(x+1\right)\left(x-1\right)\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}+2\right]}+\dfrac{4\left[2f\left(x\right)+1\right]}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{f\left(x\right).\left[4f\left(x\right)+3\right]}{x-1}+\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{4}{x-1}\)

\(=5.\dfrac{f\left(-1\right).\left[4f\left(-1\right)+3\right]}{-2}+5.\dfrac{4}{-2}=\dfrac{5.\left(-\dfrac{1}{2}\right)\left(-2+3\right)}{-2}+5.\dfrac{4}{-2}=...\)

NV
23 tháng 1 2021

Không phải dạng, nó chỉ là ứng dụng kiến thức cơ bản về giới hạn của hàm thôi

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

1.

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)

\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

2.

\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:

\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)

 

a: \(\lim\limits_{x->0^-^-}\dfrac{-2x+x}{x\left(x-1\right)}=lim_{x->0^-}\left(\dfrac{-x}{x\left(x-1\right)}\right)\)

\(=lim_{x->0^-}\left(\dfrac{-1}{x-1}\right)=\dfrac{-1}{0-1}=\dfrac{-1}{-1}=1\)

b: \(=lim_{x->-\infty}\left(\dfrac{x^2-x-x^2+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)

\(=lim_{x->-\infty}\left(\dfrac{-x+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)

\(=lim_{x->-\infty}\left(\dfrac{-1+\dfrac{1}{x}}{-\sqrt{1-\dfrac{1}{x^2}}-\sqrt{1-\dfrac{1}{x^2}}}\right)=\dfrac{-1}{-2}=\dfrac{1}{2}\)

 

19 tháng 2 2023

lỗi gõ câu a