Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\)
\(=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{16}\cdot\dfrac{16\cdot17}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{17}{2}\)
\(=\dfrac{1}{2}\left(2+3+4+...+17\right)\)
\(=\dfrac{1}{2}\cdot152=76\)
b: Sửa đề: \(\left[\left(\dfrac{2}{193}-\dfrac{3}{386}\right)\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}+\dfrac{11}{3862}\right)\cdot\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{2}{193}\cdot\dfrac{193}{17}-\dfrac{3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right):\left[\dfrac{7}{1931}\cdot\dfrac{1931}{25}+\dfrac{11}{3862}\cdot\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{2}{17}-\dfrac{3}{34}+\dfrac{33}{34}\right):\left(\dfrac{7}{25}+\dfrac{11}{50}+\dfrac{9}{2}\right)\)
\(=\left(\dfrac{2}{17}+\dfrac{30}{34}\right):\dfrac{14+11+225}{50}\)
\(=1\cdot\dfrac{50}{250}=1\cdot\dfrac{1}{5}=\dfrac{1}{5}\)
c: Sửa đề: \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}=\dfrac{3}{8}+\dfrac{5}{8}=1\)
d: \(\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)}\)
\(=\dfrac{1}{3}+1:\dfrac{3}{2}=1\)
ta có
\(M=[(\dfrac{2}{193}-\dfrac{3}{386}).\dfrac{193}{17}+\dfrac{33}{34}]:[(\dfrac{7}{2001}+\dfrac{11}{4002}).\dfrac{2001}{25}+\dfrac{9}{2}]\)
\(\Rightarrow\)\(M=[\dfrac{1}{386}.\dfrac{193}{17}+\dfrac{33}{34}]:[\dfrac{25}{4002}.\dfrac{2001}{25}+\dfrac{9}{2}]\)
\(\Rightarrow\)\(M=[\dfrac{1}{34}+\dfrac{33}{34}]:[\dfrac{1}{2}+\dfrac{9}{2}]\)
\(\Rightarrow\)\(M=1:5\)
\(\Rightarrow M=\dfrac{1}{5}\)
\(\left(\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right):\left(\left(\frac{7}{1931}+\frac{11}{3862}\right)\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
= \(\left(\left(\frac{4}{386}-\frac{3}{386}\right)\cdot\frac{193}{17}+\frac{33}{34}\right):\left(\left(\frac{14}{3862}+\frac{11}{3862}\right)\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
= \(\left(\frac{1}{186}\cdot\frac{193}{17}+\frac{33}{34}\right):\left(\frac{25}{3862}\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
= \(\left(\frac{1}{34}+\frac{33}{34}\right):\left(\frac{1}{2}+\frac{9}{2}\right)\)
= \(1:5\)
= \(\frac{1}{5}=0,2\)
\(=\left(\frac{1}{386}-\frac{193}{17}+\frac{33}{34}\right):\left(\frac{25}{3862}\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
\(=\left[\frac{1}{386}-\left(\frac{193}{17}-\frac{33}{34}\right)\right]:\left(\frac{1}{2}+\frac{9}{2}\right)\)
\(=\left(\frac{1}{386}-\frac{386}{34}\right)\div5\)
\(=\frac{1}{386}\cdot\frac{1}{5}-\frac{386}{34}\cdot\frac{1}{5}=\frac{1}{1930}-\frac{386}{170}=\)là 1 phân số âm.
\(\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\left(\frac{4}{386}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{14}{3862}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left(\frac{1}{386}.\frac{193}{17}+\frac{33}{34}\right):\left(\frac{25}{3862}.\frac{1931}{25}+\frac{9}{2}\right)\)
\(=\left(\frac{1}{34}+\frac{33}{34}\right):\left(\frac{1}{2}+\frac{9}{2}\right)\)
\(=1:5\)
\(=\frac{1}{5}\)
\(A=\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]\div\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\left(\frac{4}{386}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]\div\left[\left(\frac{14}{3862}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\frac{1}{386}.\frac{193}{17}+\frac{33}{34}\right]\div\left[\frac{25}{3862}.\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\frac{1}{34}+\frac{33}{34}\right]\div\left[\frac{1}{2}+\frac{9}{2}\right]\)
\(=1\div5=0,2\)
Vậy A = 0,2
a, \(\dfrac{0,75-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{2,72-2,2+\dfrac{11}{7}+\dfrac{11}{13}}\)
= \(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}}{\dfrac{11}{4}-\dfrac{11}{5}+\dfrac{11}{7}+\dfrac{11}{13}}\)
= \(\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}\)
= \(\dfrac{3}{11}\)
b. \(\dfrac{0,357-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{0,625-0,5+\dfrac{5}{11}+\dfrac{5}{12}}\)
= \(\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{5}{8}-\dfrac{5}{10}+\dfrac{5}{11}+\dfrac{5}{12}}\)
= \(\dfrac{3.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{5.\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}\)
= \(\dfrac{3}{5}\)
c, \(-\left|-1,5\right|.\left(1\dfrac{1}{3}-2\right)-\left|-\dfrac{2}{3}\right|\)
= \(-1,5.\left(\dfrac{4}{3}-2\right)-\dfrac{2}{3}\)
= \(-1,5.\left(\dfrac{-2}{3}\right)-\dfrac{2}{3}\)
= \(1-\dfrac{2}{3}=\dfrac{1}{3}\)
Đây là tính hợp lí ... mà câu a là 27,5 chứ không phải 2,75...
\(A=\dfrac{7,5-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{27,5-2,2+\dfrac{11}{7}+\dfrac{11}{3}}=\dfrac{\dfrac{15}{2}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}}{\dfrac{55}{2}-\dfrac{11}{5}+\dfrac{11}{7}+\dfrac{11}{3}}\\ =\dfrac{3\left(\dfrac{5}{2}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{5}{2}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
b: \(=26:\left[\dfrac{3:0.1}{2.5\cdot2}+\dfrac{0.25\cdot4}{2}\right]+\dfrac{2}{3}\cdot\dfrac{21}{4}\)
\(=26:\left[\dfrac{30}{5}+1\right]+\dfrac{42}{12}\)
\(=\dfrac{26}{7}+\dfrac{42}{12}=\dfrac{101}{14}\)
c: \(=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=\dfrac{\left(\dfrac{1}{34}+\dfrac{33}{34}\right)}{\dfrac{1}{2}+\dfrac{9}{2}}=1:5=\dfrac{1}{5}\)
bài 1:
\(\frac{7}{4}\left(\frac{33}{42}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=\frac{7}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\cdot\frac{4}{21}=11\)
\(\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
= \(\left[\frac{193}{17}.\frac{2}{193}-\frac{193}{17}.\frac{3}{386}+\frac{33}{34}\right]:\left[\frac{1931}{25}.\frac{7}{1931}+\frac{1931}{25}.\frac{11}{3862}+\frac{9}{2}\right]\)
= \(\left[\frac{2}{17}-\frac{3}{17}+\frac{33}{34}\right]:\left[\frac{7}{25}+\frac{11}{50}+\frac{9}{2}\right]\)
= \(\left[\frac{4}{34}-\frac{6}{34}+\frac{33}{34}\right]:\left[\frac{14}{50}+\frac{11}{50}+\frac{225}{50}\right]\)
= \(\frac{31}{34}:2\)
= \(\frac{31}{68}\)
\(\left[\left(\dfrac{2}{193}-\dfrac{3}{386}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}+\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\left(\dfrac{4}{386}-\dfrac{3}{386}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{14}{3862}+\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\dfrac{1}{386}.\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{25}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
\(=\left[\dfrac{1}{34}+\dfrac{33}{34}\right]:\left[\dfrac{1}{2}+\dfrac{9}{2}\right]\)
\(=1:5\)
\(=\dfrac{1}{5}\)
\(=0,2\)
Theo đề ta có:
\(\left[\left(\dfrac{2}{193}-\dfrac{3}{389}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(\left[\left(\dfrac{4}{368}-\dfrac{3}{368}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(\left[\dfrac{1}{386}.\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(\left[\dfrac{1}{2}.\dfrac{1}{17}+\dfrac{33}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(\left[\dfrac{1}{34}+\dfrac{33}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(\left[\dfrac{34}{34}\right]:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(1:\left[\dfrac{7}{1931}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(1:\left[\dfrac{14}{3862}+\dfrac{11}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=>\(1:\left[\dfrac{25}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)
=> \(1:\left[1+\dfrac{9}{2}\right]\)
=> \(1:\left[\dfrac{2}{2}+\dfrac{9}{2}\right]\)
=> \(1:\dfrac{11}{2}\)
=> \(1.\dfrac{2}{11}\)
=> \(\dfrac{2}{11}\)