K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{9999}{10000}\)

\(=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(99\cdot101\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(100\cdot100\right)}\)

\(=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right)\left(3\cdot4\cdot5...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)

\(=\frac{1\cdot101}{100\cdot2}\)

\(=\frac{101}{200}\)

15 tháng 5 2017

Đáp án là :101/200

25 tháng 4 2017

Nhận xét :\(1-\frac{1}{n^2}=\frac{n^2-1}{n^2}=\frac{\left(n+1\right)\left(n-1\right)}{n^2}\)

Do đó : \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{100^2}\right)\)

\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}.........\frac{99.101}{100^2}\)

\(=\frac{\left(1.2.3....99\right)\left(3.4.5....101\right)}{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}\)

\(=\frac{101}{100.2}\)

\(=\frac{101}{200}\)

24 tháng 12 2016

1,tổng quát:  (2k+1)/[k(k+1)^2]

=(2k+1)/k^2(k+1)^2=[(k+1)^^2-k^2]/k^2(k+1)^2=1/k^2-1/(k+1)^2

áp dụng vào ,kết quả =2024/2025

25 tháng 12 2016

Hoàng Phúc  bạn có thể giải chi tiết hơn một chút đc ko???

2 tháng 12 2016

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

\(=\frac{1}{x}\)

2 tháng 12 2016

ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

=\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

 

= \(\frac{1}{x}\)

28 tháng 12 2019

\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}...\frac{1-98^2}{98^2}.\frac{1-99^2}{99^2}\)

\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{98^2-1}{98^2}.\frac{99^2-1}{99^2}\)

\(\frac{\left(2-1\right).\left(2+1\right)}{2^2}.\frac{\left(3-1\right).\left(3+1\right)}{3^2}.\frac{\left(4-1\right).\left(4+1\right)}{4^2}...\frac{\left(98-1\right)\left(98+1\right)}{98^2}.\frac{\left(99-1\right)\left(99+1\right)}{99^2}\)

\(=\frac{\left(2-1\right).\left(3-1\right).\left(4-1\right)...\left(99-1\right)}{2.3.4...98.99}.\frac{\left(2+1\right).\left(3+1\right).\left(4+1\right)...\left(99+1\right)}{2.3.4...98.99}\)

\(=\frac{1.2.3....98}{2.3.4...98.99}.\frac{3.4.5...100}{2.3.4...98.99}\)

\(=\frac{1}{99}.\frac{100}{2}\)

\(=\frac{50}{99}\)

Chúc bạn học tốt !!!

27 tháng 12 2017

quá dễ tách ra thành 1\x-1\x+1+1\x+1-1\x+2+1\x+2-1\x+3+1\x+3-1\x+4+...+1\x+5-1\x+6

=1\x-1\x+6

=6\x(x+6)

27 tháng 12 2017

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}\)\(=\frac{6}{x\left(x+6\right)}\)

22 tháng 7 2016

Xét số hạng tổng quát:

\(k^4+\frac{1}{4}=\left(k^4+2\cdot\frac{1}{2}\cdot k^2+\frac{1}{4}\right)-k^2\)=\(\left(k^2+\frac{1}{2}\right)^2-k^2\)

\(\left(k^2+\frac{1}{2}-k\right)\left(k^2+\frac{1}{2}+k\right)\)

Thay k từ 1 đến 12 ta được:

A=\(\frac{\frac{1}{2}\cdot\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(132+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(152+\frac{1}{2}\right)}\)=\(\frac{\frac{1}{2}}{152+\frac{1}{2}}=\frac{1}{305}\)

22 tháng 7 2016

Vì cộng thêm k2 trong ngoặc nên phải trừ đi k2