Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:\(\lim\limits_{x\to 1}\left(\frac{m}{1-x^m}-\frac{n}{1-x^n}\right)=\lim\limits_{x\to 1}\left(\frac{m}{1-x^m}-\frac{1}{1-x}-\frac{n}{1-x^n}+\frac{1}{1-x}\right)\)
\(=\lim\limits_{x\to 1}\left[\frac{m-(1+x+...+x^{m-1})}{1-x^m}-\frac{n-(1+x+..+x^{n-1})}{1-x^n}\right]\)
\(=\lim\limits_{x\to 1}\left[\frac{(1-x)+(1-x^2)+...+(1-x^{m-1})}{1-x^m}-\frac{(1-x)+(1-x^2)+...+(1-x^{n-1})}{1-x^n}\right]\)
\(\lim\limits_{x\to 1}\left[\frac{1+(x+1)+...+(1+x+...x^{m-2})}{1+x+...+x^{m-1}}-\frac{1+(1+x)+...+(1+x+...+x^{n-2})}{1+x+...x^{n-1}}\right]\)
\(=\frac{m(m-1)}{2m}-\frac{n(n-1)}{2n}=\frac{m-1}{2}-\frac{n-1}{2}=\frac{m-n}{2}\)
C2: Xài L'Hospital
\(\lim\limits_{x\rightarrow1}\dfrac{m-m.x^n-n+n.x^m}{1-x^m-x^n+x^{m+n}}=\lim\limits_{x\rightarrow1}\dfrac{m.n.x^{m-1}-m.n.x^{n-1}}{\left(m+n\right)x^{m+n-1}-m.x^{m-1}-n.x^{n-1}}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{m.n.\left(m-1\right).x^{m-2}-m.n.\left(n-1\right).x^{n-2}}{\left(m+n\right).\left(m+n-1\right)x^{m+n-2}-m\left(m-1\right)x^{m-2}-n\left(n-1\right)x^{n-2}}\)
\(=\dfrac{m^2n-mn-mn^2+mn}{m^2+2mn-m+n^2-n-m^2+m-n^2+n}=\dfrac{mn\left(m-n\right)}{2mn}=\dfrac{m-n}{2}\)
Chúng ta tính giới hạn sau:
\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}\)
Cách đơn giản nhất là sử dụng L'Hopital:
\(\lim\limits_{x\rightarrow1}\dfrac{1-x^{\dfrac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{1}{n}x^{\dfrac{1}{n}-1}}{-1}=\dfrac{1}{n}\)
Phức tạp hơn thì tách mẫu theo hằng đẳng thức
\(=\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[x]{n}}{\left(1-\sqrt[n]{x}\right)\left(1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{1+\sqrt[n]{x}+\sqrt[n]{x^2}+...+\sqrt[n]{x^{n-1}}}=\dfrac{1}{n}\)
Tóm lại ta có:
\(\lim\limits_{x\rightarrow1}\dfrac{1-\sqrt[n]{x}}{1-x}=\dfrac{1}{n}\)
Do đó:
\(I_1=\lim\limits_{x\rightarrow1}\left(\dfrac{1-\sqrt[2]{x}}{1-x}\right)\left(\dfrac{1-\sqrt[3]{x}}{1-x}\right)...\left(\dfrac{1-\sqrt[n]{x}}{1-x}\right)=\dfrac{1}{2}.\dfrac{1}{3}...\dfrac{1}{n}=\dfrac{1}{n!}\)
Câu 2 cũng vậy: L'Hopital hoặc tách hằng đẳng thức trâu bò (thôi L'Hopital đi cho đỡ sợ)
\(I_2=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(\sqrt{1+x^2}+x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}+1\right)-n\left(\sqrt{1+x^2}-x\right)^{n-1}\left(\dfrac{x}{\sqrt{1+x^2}}-1\right)}{1}\)
\(=\dfrac{n.1-n\left(-1\right)}{1}=2n\)
Ta có: \(\dfrac{n}{1-x^n}-\dfrac{1}{1-x}=\dfrac{n-\left(1+x+x^2+...+x^{n-1}\right)}{1-x^n}\)
\(=\dfrac{1-x+1-x^2+...+1-x^{n-1}}{1-x^n}\)
\(=\dfrac{1+\left(1+x\right)+\left(1+x+x^2\right)+...+1+x+x^2+...+x^{n-2}}{1+x+x^2+...+x^{n-1}}\)
\(\Rightarrow\lim\limits_{x\rightarrow1}\left(\dfrac{n}{1-x^n}-\dfrac{1}{1-x}\right)=\dfrac{n-1}{2}\)
Bài này chắc chỉ xài L'Hopital chứ tách nhân tử thì không biết đến bao giờ mới xong:
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(n-1\right)x^{n-2}-\left(n+1\right)}{2\left(x-1\right)}=\dfrac{-2}{0}=-\infty\)
Tui nghĩ cái này L'Hospital chứ giải thông thường là ko ổn :)
\(M=\lim\limits_{x\rightarrow0}\dfrac{\left(1+4x\right)^{\dfrac{1}{2}}-\left(1+6x\right)^{\dfrac{1}{3}}}{1-\cos3x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2}\left(1+4x\right)^{-\dfrac{1}{2}}.4-\dfrac{1}{3}\left(1+6x\right)^{-\dfrac{2}{3}}.6}{3.\sin3x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{1}{4}.4\left(1+4x\right)^{-\dfrac{3}{2}}.4+\dfrac{2}{9}.6.6\left(1+6x\right)^{-\dfrac{5}{3}}}{3.3.\cos3x}\)
Giờ thay x vô là được
\(N=\lim\limits_{x\rightarrow0}\dfrac{\left(1+ax\right)^{\dfrac{1}{m}}-\left(1+bx\right)^{\dfrac{1}{n}}}{\left(1+x\right)^{\dfrac{1}{2}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{m}.\left(1+ax\right)^{\dfrac{1}{m}-1}.a-\dfrac{1}{n}\left(1+bx\right)^{\dfrac{1}{n}-1}.b}{\dfrac{1}{2}\left(1+x\right)^{-\dfrac{1}{2}}}=\dfrac{\dfrac{a}{m}-\dfrac{b}{n}}{\dfrac{1}{2}}\)
\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\left(1+2x\right)^{\dfrac{1}{2}}-\left(1+3x\right)^{\dfrac{1}{3}}}=\lim\limits_{x\rightarrow0}\dfrac{n\left(1+mx\right)^{n-1}.m-m\left(1+nx\right)^{m-1}.n}{\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{1}{2}}.2-\dfrac{1}{3}\left(1+3x\right)^{-\dfrac{2}{3}}.3}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(n-1\right)\left(1+mx\right)^{n-2}.m-m\left(m-1\right)\left(1+nx\right)^{m-2}.n}{-\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{3}{2}}.2+\dfrac{2}{9}.3.3\left(1+3x\right)^{-\dfrac{5}{3}}}=....\left(thay-x-vo-la-duoc\right)\)
Lời giải:
\(\lim\limits_{x\to 1}\frac{x^n-nx+n-1}{(x-1)^2}=\lim\limits_{x\to 1}\frac{(x^n-1)-n(x-1)}{(x-1)^2}=\lim\limits_{x\to 1}\frac{(1+x+...+x^{n-1})-n}{x-1}\)
\(=\lim\limits_{x\to 1}\frac{(x-1)+(x^2-1)+...+(x^{n-1}-1)}{x-1}=\lim\limits_{x\to 1}[1+(x+1)+...+(1+x+...+x^{n-2})]\)
\(=\frac{n(n-1)}{2}\)
cho m, n là các số thực khác 0. nếu \(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx+n}{x-1}=3\) thì m.n=?
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx+n}{x-1}\) hữu hạn khi \(x^2+mx+n=0\) có nghiệm \(x=1\)
\(\Rightarrow1+m+n=0\Rightarrow n=-m-1\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx-m-1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+m+1\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x+m+1\right)=m+2\)
\(\Rightarrow m+2=3\Rightarrow m=1\Rightarrow n=-2\)
\(\Rightarrow mn=-2\)
Cách 1 là quy đồng sau đó L'Hopital khoảng 2-3 lần gì đó là hết dạng vô định (đoán thế vì dạng vô định đa thức này nếu quy đồng sẽ luôn dùng L'Hopital giết được, vấn đề chỉ là L'Hopital bao nhiêu lần)
Cách 2:
Đặt \(y=\dfrac{1}{x}\), khi đó:
\(I=\lim\limits_{y\rightarrow1}\left(\dfrac{n}{1-\dfrac{1}{y^n}}-\dfrac{m}{1-\dfrac{1}{y^m}}\right)=\lim\limits_{y\rightarrow1}\left(\dfrac{n.y^n}{y^n-1}-\dfrac{m.y^m}{y^m-1}\right)\)
\(=\lim\limits_{x\rightarrow1}\left(\dfrac{n.x^n}{x^n-1}-\dfrac{m.x^m}{x^m-1}\right)=\lim\limits_{x\rightarrow1}\left(\dfrac{n\left(x^n-1+1\right)}{x^n-1}-\dfrac{m\left(x^m-1+1\right)}{x^m-1}\right)\)
\(=\lim\limits_{x\rightarrow1}\left(n+\dfrac{n}{x^n-1}-m-\dfrac{m}{x^m-1}\right)\)
\(=n-m-\lim\limits_{x\rightarrow1}\left(\dfrac{n}{1-x^n}-\dfrac{m}{1-x^m}\right)=n-m-I\)
Hay \(I=n-m-I\Rightarrow2I=n-m\)
\(\Rightarrow I=\dfrac{n-m}{2}\)