Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu nào mình biết thì mình làm nha.
1) Đổi thành \(\dfrac{y^4}{4}+y^3-2y\) rồi thế số.KQ là \(\dfrac{-3}{4}\)
2) Biến đổi thành \(\dfrac{t^2}{2}+2\sqrt{t}+\dfrac{1}{t}\) và thế số.KQ là \(\dfrac{35}{4}\)
3) Biến đổi thành 2sinx + cos(2x)/2 và thế số.KQ là 1
a) =
=
b) = =
=
c)=
d)=
=
e)=
=
g)Ta có f(x) = sin3xcos5x là hàm số lẻ.
Vì f(-x) = sin(-3x)cos(-5x) = -sin3xcos5x = f(-x) nên:
1/ \(I=\int\limits^1_0\dfrac{2x+1}{x^2+x+1}dx=\int\limits^1_0\dfrac{d\left(x^2+x+1\right)}{x^2+x+1}=ln\left|x^2+x+1\right||^1_0=ln3\)
2/ \(\int\limits^{\dfrac{1}{2}}_0\dfrac{5x}{\left(1-x^2\right)^3}dx=-\dfrac{5}{2}\int\limits^{\dfrac{1}{2}}_0\dfrac{d\left(1-x^2\right)}{\left(1-x^2\right)^3}=\dfrac{5}{4}\dfrac{1}{\left(1-x^2\right)^2}|^{\dfrac{1}{2}}_0=\dfrac{35}{36}\)
3/ \(\int\limits^1_0\dfrac{2x}{\left(x+1\right)^3}dx\Rightarrow\) đặt \(x+1=t\Rightarrow x=t-1\Rightarrow dx=dt;\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=1\Rightarrow t=2\end{matrix}\right.\)
\(I=\int\limits^2_1\dfrac{2\left(t-1\right)dt}{t^3}=\int\limits^2_1\left(\dfrac{2}{t^2}-\dfrac{2}{t^3}\right)dt=\left(\dfrac{-2}{t}+\dfrac{1}{t^2}\right)|^2_1=\dfrac{1}{4}\)
4/ \(\int\limits^1_0\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}dx\)
Kĩ thuật chung là tách và sử dụng hệ số bất định như sau:
\(\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}=\dfrac{ax+b}{x^2+1}+\dfrac{c}{x+2}=\dfrac{\left(a+c\right)x^2+\left(2a+b\right)x+2b+c}{\left(x^2+1\right)\left(x+2\right)}\)
\(\Rightarrow\left\{{}\begin{matrix}a+c=0\\2a+b=4\\2b+c=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=0\\a=-c=2\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^1_0\left(\dfrac{2x}{x^2+1}-\dfrac{2}{x+2}\right)dx=\int\limits^1_0\dfrac{d\left(x^2+1\right)}{x^2+1}-2\int\limits^1_0\dfrac{d\left(x+2\right)}{x+2}=ln\dfrac{8}{9}\)
5/ \(\int\limits^1_0\dfrac{x^2dx}{x^6-9}\Rightarrow\) đặt \(x^3=t\Rightarrow3x^2dx=dt\Rightarrow x^2dx=\dfrac{1}{3}dt;\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)
\(I=\dfrac{1}{3}\int\limits^1_0\dfrac{dt}{t^2-9}=\dfrac{1}{18}\int\limits^1_0\left(\dfrac{1}{t-3}-\dfrac{1}{t+3}\right)dt=\dfrac{1}{18}ln\left|\dfrac{t-3}{t+3}\right||^1_0=-\dfrac{1}{18}ln2\)
6/ Tương tự câu 4, sử dụng hệ số bất định ta tách được:
\(\int\limits^2_1\dfrac{2x-1}{x^2\left(x+1\right)}dx=\int\limits^2_1\left(\dfrac{3x-1}{x^2}-\dfrac{3}{x+1}\right)dx=\int\limits^2_1\left(\dfrac{3}{x}-\dfrac{1}{x^2}-\dfrac{3}{x+1}\right)dx\)
\(=\left(3ln\left|\dfrac{x}{x+1}\right|+\dfrac{1}{x}\right)|^2_1=3ln\dfrac{4}{3}-\dfrac{1}{2}\)
1/ \(I=\int\dfrac{lnx}{\sqrt{x}}dx\) \(\Rightarrow\left\{{}\begin{matrix}u=lnx\\dv=\dfrac{dx}{\sqrt{x}}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=2\sqrt{x}\end{matrix}\right.\)
\(\Rightarrow I=2\sqrt{x}.lnx-2\int\dfrac{dx}{\sqrt{x}}=2\sqrt{x}lnx-4\sqrt{x}+C\)
2/ \(I=\int ln\left(x+\sqrt{x^2+1}\right)dx\)
\(\Rightarrow\left\{{}\begin{matrix}u=ln\left(x+\sqrt{x^2+1}\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{\sqrt{x^2+1}}\\v=x\end{matrix}\right.\)
\(\Rightarrow I=x.ln\left(x+\sqrt{x^2+1}\right)-\int\dfrac{xdx}{\sqrt{x^2+1}}\)
\(=x.ln\left(x+\sqrt{x^2+1}\right)-\dfrac{1}{2}\int\dfrac{d\left(x^2+1\right)}{\sqrt{x^2+1}}\)
\(=x.ln\left(x+\sqrt{x^2+1}\right)-\sqrt{x^2+1}+C\)
3/ \(\int\left(x^2+2x+3\right)dx=\dfrac{x^3}{3}+x^2+3x+C\)
\(I=\int\dfrac{dx}{\sqrt{\left(x+\dfrac{3}{2}\right)^2+\dfrac{1}{4}}}\)
Đặt \(x+\dfrac{3}{2}=\dfrac{1}{2}tanu\Rightarrow dx=\dfrac{1}{2cos^2u}du\)
\(I=\int\dfrac{1}{\dfrac{1}{2}\sqrt{tan^2u+1}}.\dfrac{1}{2.cos^2u}du=\int\dfrac{1}{cosu}du=\int\dfrac{1}{1-sin^2u}d\left(sinu\right)\)
\(=\dfrac{1}{2}ln\left|\dfrac{1+sinu}{1-sinu}\right|+C=ln\left(\dfrac{1+sinu}{cosu}\right)+C=ln\left(\dfrac{1}{cosu}+tanu\right)+C\)
Chú ý: \(\dfrac{1}{cosu}=\sqrt{\dfrac{1}{cos^2u}}=\sqrt{1+tan^2u}=\sqrt{1+\left(2x+3\right)^2}=2\sqrt{x^2+3x+2}\)
Do đó: \(I=ln\left(2x+3+2\sqrt{x^2+3x+2}\right)+C\)
Chất thế, tại hạ xin bái phục.