Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(\dfrac{10.11.\left(1+5.5+7.7\right)}{11.12.\left(1+5.5+7.7\right)}=\dfrac{10}{12}=\dfrac{5}{6}\)
\(1-\dfrac{1}{n^2}=\dfrac{n^2-1}{n^2}=\dfrac{\left(n-1\right)\left(n+1\right)}{n^2}\)
Do đó:
\(M=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{30^2}\right)\)
\(=\dfrac{\left(2-1\right)\left(2+1\right)}{2^2}.\dfrac{\left(3-1\right)\left(3+1\right)}{3^2}.\dfrac{\left(4-1\right)\left(4+1\right)}{4^2}...\dfrac{\left(30-1\right)\left(30+1\right)}{30^2}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{29.31}{30^2}=\dfrac{1.2.3...29}{2.3.4...30}.\dfrac{3.4.5...31}{2.3.4...30}\)
\(=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)
MK lm bài 1:
\(\left(a-b\right)\left(a+b\right)=a^2+ab-ab-b^2=a^2-b^2\)
Bài 1:
\(\left(a-b\right)\left(a+b\right)=a^2+ab-ab-b^2\)
\(=a^2-b^2\)
P = (-1) + (-2) + ... + (-50)
P = -(1 + 2 + 3 + ... + 50 )
P = - [( 1 + 50) . 50 : 2 ]
P = -1275
ta lấy các số + vs nhau ra -50 để có các số -50 cùng nhau rồi cộng lại ra -920
1, 215 + (-38) - (-58) + 90 - 85
= 215 - 38 + 58 + 90 - 85
= (215 - 85) + (-38 + 58) + 90
= 130 + 20 + 90
= 150 + 90
= 240
2, 917 - ( 417 - 65 )
= 917 - 417 + 65
= 500 + 65
= 565
Bài 1:
a) \(a=2\cdot3\cdot5\cdot43\)
\(b=7200=2^5\cdot3^2\cdot5^2\)
\(c-4680=2^3\cdot3^2\cdot5\cdot13\)
b) \(\dfrac{8440}{5910}=\dfrac{8440:10}{5910:10}=\dfrac{844}{591}\)
\(\dfrac{1245}{3450}=\dfrac{1245:15}{3450:15}=\dfrac{83}{230}\)
Bài 2:
a) Ước nguyên tố của 140 là:
\(ƯNT\left(140\right)=\left\{2;5;7\right\}\)
Ước nguyên tố của 138 là:
\(ƯNT\left(138\right)=\left\{3;23;2\right\}\)
b) \(A=\dfrac{2^{10}+4^6}{8^4}\)
\(A=\dfrac{2^{10}+2^{12}}{2^{12}}\)
\(A=\dfrac{2^{10}\cdot\left(1+2^2\right)}{2^{12}}\)
\(A=\dfrac{1+4}{2^2}\)
\(A=\dfrac{5}{4}\)
\(B=\dfrac{6^{10}+15\cdot2^{10}\cdot3^9}{12\cdot8^3\cdot27^3}\)
\(B=\dfrac{2^{10}\cdot3^{10}+5\cdot2^{10}\cdot3^{10}}{2^{11}\cdot3^{10}}\)
\(B=\dfrac{2^{10}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{10}}\)
\(B=\dfrac{1+5}{2}\)
\(B=3\)