K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1 2022

\(f\left(x\right)=\dfrac{12\left(x^2+5,76\right)}{4\sqrt{x^2+3,24}.3\sqrt{x^2+10,24}}=\dfrac{12\left(x^2+5,76\right)}{\sqrt{16x^2+51,84}.\sqrt{9x^2+92,16}}\)

\(f\left(x\right)\ge\dfrac{24\left(x^2+5,76\right)}{16x^2+51,84+9x^2+92,16}=\dfrac{24\left(x^2+5,76\right)}{25\left(x^2+5,76\right)}=\dfrac{24}{25}\)

\(f\left(x\right)_{min}=\dfrac{24}{25}\) khi \(16x^2+51,84=9x^2+92,16\Leftrightarrow x^2=\dfrac{144}{25}\)

4 tháng 1 2022

đừng lấy nó ko ra min đâu

5 tháng 9 2021

\(a,P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\left(x\ge0;x\ne9\right)\\ P=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ P=\dfrac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ P=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ P=\dfrac{\left(x+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+8}{\sqrt{x}+1}\)

\(b,x=14-6\sqrt{5}=\left(3-\sqrt{5}\right)^2\)

Thay vào P:

\(P=\dfrac{14-6\sqrt{5}+8}{\sqrt{\left(3-\sqrt{5}\right)^2}+1}=\dfrac{22-6\sqrt{5}}{4-\sqrt{5}}=\dfrac{\left(4+\sqrt{5}\right)\left(22-6\sqrt{5}\right)}{11}=\dfrac{55-2\sqrt{5}}{11}\)

 

5 tháng 9 2021

a) \(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\left(đk:x\ge0,x\ne9\right)\)

\(=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3x+x\sqrt{x}+8\sqrt{x}-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x\left(\sqrt{x}-3\right)+8\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(x+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+8}{\sqrt{x}+1}\)

b) \(P=\dfrac{x+8}{\sqrt{x}+1}=\dfrac{14-6\sqrt{5}+8}{\sqrt{14-6\sqrt{5}}+1}=\dfrac{22-6\sqrt{5}}{\sqrt{\left(3-\sqrt{5}\right)^2}+1}=\dfrac{22-6\sqrt{5}}{3-\sqrt{5}+1}=\dfrac{22-6\sqrt{5}}{4-\sqrt{5}}\)

10 tháng 11 2021

\(ĐK:x\ge0;x\ne1;x\ne4\\ P=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\\ P=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\\ P=\dfrac{2\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-4}{3\sqrt{x}+3}\)

7 tháng 12 2021

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

8 tháng 12 2021

\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế

 

23 tháng 12 2020

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)

\(=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)

b) Ta có: \(x=3-2\sqrt{2}\)

\(=2-2\cdot\sqrt{2}\cdot1+1\)

\(=\left(\sqrt{2}-1\right)^2\)

Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(P=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\), ta được: 

\(P=\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{2}-\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\dfrac{1}{\sqrt{2}-1}\)

\(=\sqrt{2}+1\)

Vậy: Khi \(x=3-2\sqrt{2}\) thì \(P=\sqrt{2}+1\)

23 tháng 12 2020

cái x-3 ở tử phân tích kiểu j ra đc cái kia v bạn

 

25 tháng 7 2023

\(a,P=\dfrac{3\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}+4-\sqrt{x}-1}{\sqrt{x}+2}\\ =\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}=\dfrac{\left|\sqrt{5}-1\right|+3}{\left|\sqrt{5}-1\right|+2}=\dfrac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\dfrac{\sqrt{5}+2}{\sqrt{5}+1}\)

3 tháng 6 2023

a) \(P=\left(3-\dfrac{3}{\sqrt{x}-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)

\(=\left(\dfrac{3\left(\sqrt{x}-1\right)-3}{\sqrt{x}-1}\right):\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+2}\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right]\)

\(=\dfrac{3\sqrt{x}-3-3}{\sqrt{x}-1}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)\)

\(=3\sqrt{x}-6\)

b) \(P=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)

\(\Leftrightarrow3\sqrt{x}-6=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)   (1)

ĐKXĐ: \(x>0\)

\(\left(1\right)\Leftrightarrow3x-6\sqrt{x}=4\sqrt{x}-1\)

\(\Leftrightarrow3x-6\sqrt{x}-4\sqrt{x}+1=0\)

\(\Leftrightarrow3x-10\sqrt{x}+1=0\)   (2)

Đặt \(t=\sqrt{x}\ge0\)

\(\left(2\right)\Leftrightarrow3t^2-10t+1=0\)

\(\Delta'=25-4=22\)

Phương trình có hai nghiệm phân biệt:

\(t_1=\dfrac{5+\sqrt{22}}{3}\) (nhận)

\(t_2=\dfrac{5-\sqrt{22}}{3}\) (nhận)

Với \(t=\dfrac{5+\sqrt{22}}{3}\) \(\Leftrightarrow\sqrt{x}=\dfrac{5+\sqrt{22}}{3}\Leftrightarrow x=\dfrac{47+10\sqrt{22}}{9}\) (nhận)

Với \(t=\dfrac{5-\sqrt{22}}{3}\Leftrightarrow\sqrt{x}=\dfrac{5-\sqrt{22}}{3}\Leftrightarrow x=\dfrac{47-10\sqrt{22}}{9}\) (nhận)

Vậy \(x=\dfrac{47+10\sqrt{22}}{9};x=\dfrac{47-10\sqrt{22}}{9}\) thì \(P=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)

a: \(P=\dfrac{3\sqrt{x}-3-3}{\sqrt{x}-1}:\dfrac{x+2-x+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=3\sqrt{x}-6\)

b: P=(4căn x-1)/căn x

=>3x-6căn x-4căn x+1=0

=>3x-10căn x+1=0

=>x=(47+10căn 22)/9 hoặc x=(47-10căn 22)/9

1: \(B=\dfrac{2\sqrt{x}-x-2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{-x}{\left(\sqrt{x}-2\right)\cdot\sqrt{x}}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)

 

 

13 tháng 5 2018

a)

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)

\(\Leftrightarrow P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\right):\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}.\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}.\sqrt{x}-\left(4\sqrt{x}-3\right)}{\sqrt{x}.\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{x-4-x+4\sqrt{x}}\)

\(\Leftrightarrow P=\dfrac{x-4\sqrt{x}+3}{4\sqrt{x}-4}\)

\(\Leftrightarrow P=\dfrac{x-3\sqrt{x}-\sqrt{x}+3}{4\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)}{4\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{4\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{4}\)

13 tháng 5 2018

b) Ta có :

\(\sqrt{P}=\sqrt{\dfrac{\sqrt{x}-3}{4}}=\dfrac{\sqrt{\sqrt{x}-3}}{2}\)

vì: \(\sqrt{\sqrt{x}-3}\ge0\)

\(\Leftrightarrow\dfrac{\sqrt{\sqrt{x}-3}}{2}\ge0\)

\(\Leftrightarrow\sqrt{P}\ge0\)

dấu bằng xảy ra \(\Leftrightarrow\sqrt{\sqrt{x}-3}=0\Leftrightarrow\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(TMĐK\right)\)

Vậy \(min\sqrt{P}=0khix=9\)

29 tháng 1 2021

a) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow B=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(\Leftrightarrow B=\dfrac{2-\sqrt{x}}{3\sqrt{x}}\)

b) \(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)  (*)

Thay (*) vào B , ta được : \(B=\dfrac{2-\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+3}\)

 

29 tháng 1 2021

Chép sai đề r bạn ơi!