K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Ta có:  \(x-y=6\)  \(\Rightarrow\)\(x=6+y\)
Thế \(x=6+y\) vào biểu thức \(x+y=4,\)  ta được  \(6+y+y=4\)   
      \(\Rightarrow\) \(6+2y=4\) \(\Rightarrow\)          \(y=\frac{4-6}{2}=\frac{-2}{2}=-1\)
Thế  \(y=-1\) vào biểu thức \(x+y=4,\)ta được  \(x+\left(-1\right)=4\)
                                                                                              \(\Rightarrow\)\(x=4-\left(-1\right)=5\)
Thế \(x=5\)và \(y=-1\)vào biểu thức \(B\),
 ta được:   \(B=5^2-2.5.\left(-1\right)-2.\left(-1\right)^2\)
                   \(B=25-\left(-10\right)-2\)
                   \(B=25+10-2=33\)
Vậy giá trị của biểu thức \(B\)tại  \(x=5\)và \(y=-1\)là \(33\)

12 tháng 3 2017

.Cộng cả hai vế của biểu thức x-y=6 và x+y=4, ta có:

(x-y)+(x+y)=6+4 => x-y+x+y=10 => 2x=10 => x=10:2 => x=5.

Thay x=5 vào biểu thức x-y=6, ta có:

5-y=6 => y=5-6 => y=-1.

thay x=5;y=-1 vào biểu thức B, ta có:

x2-2xy-2y2= 52- 2.5.(-1) - 2.(-1)2=25 +10 - 2= 33

a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)

\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)

P=\(A+B=x^2y^2-x^2-3\)

\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)

b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)

6 tháng 4 2018

x-y=0 => x=y Mà x+y=4 nên x=y=2

=> \(B=2^2-2.2.2+2.2=4-8+4=0\)

Vậy B=0

a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)

b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)

23 tháng 2 2022

Thanks

 

12 tháng 4 2021

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 M=x3+x2y−2x2−xy−y2+3y+x−1M=x3+x2y−2x2−xy−y2+3y+x−1

M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)

M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1

M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1

M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1

M=x2.0+y.0+0+1M=x2.0+y.0+0+1

M=1M=1

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)

N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2

N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2

N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2

N=x2.0−xy.0+2.0+2N=x2.0−xy.0+2.0+2

N=2N=2

P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3

P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3

P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3

P=x3.0+x2y.0−x.0+3P=x3.0+x2y.0−x.0+3

P=3

5 tháng 4 2020

x-y=0 nên x>y;x=(4+0):2=2

y=4-2=2

2-23 -23 =-12

ko biết có đúng ko

18 tháng 8 2018

a)\(\frac{2}{x}+\frac{3}{y}=\frac{5}{6}\)

Vì 2+3=5

=) x=y=6

9 tháng 4 2016

Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m

Chiều dài là : 15 + 22,5 = 37,5 m

Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m

Diện tích là : 37,5 x 22,5 = 843,75 m2

\(=-\left(-2\right)^2-2\cdot\left(-2\right)\cdot4+3\cdot\left(-2\right)^3+2\cdot4-3\cdot\left(-2\right)^3\)

\(=-4+16-24+8+24=-4+24=20\)

15 tháng 1 2022

Thay x=-2, y=4 vào biểu thức ta có:
\(-x^2-2xy+3x^3+2y-3x^3\\ =-x^2-2xy+2y\\ =-\left(-2\right)^2-2\left(-2\right).4+2.4\\ =-4+16+8\\ =20\)