Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi biểu thức đó là \(K=\frac{x+2003}{\left(x+2004\right)^2}\)
Đặt \(x+2003=k_0\)
Lúc đó \(K=\frac{k_0}{\left(k_0+1\right)^2}=\frac{\left(k_0^2+2k_0+1\right)-\left(k_0^2+k_0+1\right)}{k_0^2+2k_0+1}\)
\(=1-\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}\)
Để K đạt GTLN thì \(\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}\)đạt GTNN
Đặt \(k_1=k_0+1\Rightarrow k_0=k_1-1\)
\(\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}=\frac{\left(k_1-1\right)^2+\left(k_1-1\right)+1}{k_1^2}\)
\(=\frac{k_1^2-k_1+1}{k_1^2}=\frac{1}{k_1^2}-\frac{1}{k_1}+1\)
Đặt \(\frac{1}{k_1}=k_2\)thì có \(K=k_2^2-k_2+1=\left(k_2-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
(Dấu "=" xảy ra khi \(k_2=\frac{1}{2}\Rightarrow k_1=2\Rightarrow k_0=1\Rightarrow x=-2002\))
Vậy \(K_{max}=\frac{1}{4}\Leftrightarrow x=-2002\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
A=(20042-20032)+(20022-20012)+...+(22-12)
A=(2004-2003)(2004+2003)+(2002-2001)(2002+2001)+...+(2-1)(2+1)
A=2004+2003+2002+2001+...+2+1
A=(2004+1).2014:2
A=2029105
câu 2 :
\(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)
\(\Rightarrow x+2009=0\)
\(\Rightarrow x=-2009\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{zx+zy+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{zx+zy+z^2}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(zx+zx+z^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(z+x\right)\left(z+y\right)=0\Rightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
Dù trường hợp nào thay vào thì ta luôn có \(\left(x^3+y^3\right)\left(y^5+z^5\right)\left(x^7+z^7\right)=0\)
dùng hàng đẳng thức bình phương tổng 2 số là auto ra, cái chính là tách khéo léo để tạo được thành hàng đẳng thức nhá !!!
a) \(498^2+996.502+502^2\)
\(=498^2+2.498.502+502^2\)
\(=\left(498+502\right)^2\)
\(=1000^2\)
\(=1000000\)
b) \(126^2-52.126+26^2\)
\(=126^2-2.26.126+26^2\)
\(=\left(126-26\right)^2\)
\(=100^2\)
\(=10000\)
\(A=x^2+4x+5\\ =\left(x+2\right)^2+1\\ \left(x+2\right)^2\ge0\\ \Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\) khi \(x+2=0\Leftrightarrow x=-2\)
\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\Rightarrow\frac{7}{2}\left(x-2\right)^2\left(y-1\right)^2\ge0\Rightarrow B_{min}=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
\(C=\left|x-2003\right|+\left|x-1\right|=\left|2003-x\right|+\left|x-1\right|\ge\left|2003-x+x-1\right|=2002\left(\left|a\right|+\left|b\right|\ge\left|a+b\right|\right)\Rightarrow C_{min}=2002\Leftrightarrow\left(2003-x\right)\left(x-1\right)\ge0\Leftrightarrow2003\ge x\ge1\)
\(P=\frac{\left(2003^2\cdot2013+31\cdot2004-1\right)\left(2003\cdot2008+4\right)}{2004\cdot2005\cdot2006\cdot2007\cdot2008}\)
Đặt a=2004 ta có
\(P=\frac{\left[\left(x-1\right)^2\cdot\left(a+9\right)+31\cdot a-1\right]\left[\left(a-1\right)\left(a+4\right)+4\right]}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)
\(=\frac{\left[\left(a^2-2a+1\right)\left(a+9\right)+31a-1\right]\left[\left(a^2+3a-4\right)+4\right]}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)
\(=\frac{\left(a^3+9a^2-2a^2-18a+a+9+31a-1\right)\left(a^2+3a\right)}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)
\(=\frac{\left(a^3+7a^2+14a+8\right)\left(a^2+3a\right)}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}\)
\(=\frac{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)}=1\)
Vậy \(P=1\)
Ui ko khó đâu chỉ lắm số thôi bạn ạ ~~~
Ta xét tử số: (2003^2.2013+31.2004-1)(2003.2008+4)
=[2003^2(2003+10)+(2003+1).31-1][2003(2003+5)+4]
=[2003^3+10.2003^2+31.2003+30][2003^2+5.2003+4]
Đặt 2003=a cho đỡ phức tạp
=(a^3+10a^2+31a+30)(a^2+5a+4)
Đến đây bạn phân tích đa thức thành nhân tử thôi
=(a+5)(a+2)(a+3)(a+1)(a+4)
Xét mẫu số khi đặt 2003=a
=> MS=(a+1)(a+2)(a+3)(a+4)(a+5)
=> P=1
Vậy P=1.