K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: AB//CD

=>\(\widehat{BAD}+\widehat{ADC}=180^0\)

=>\(2\cdot\left(\widehat{KAD}+\widehat{KDA}\right)=180^0\)

=>\(\widehat{KAD}+\widehat{KDA}=90^0\)

=>ΔKAD vuông tại K

=>\(\widehat{AKD}=90^0\)

13 tháng 9 2017

Ta có : KABˆ=KADˆKAB^=KAD^ ( AK là tia phân giác A^A^ )
Mà KABˆ=AKDˆKAB^=AKD^ ( so le trong )
\Rightarrow AKDˆ=KADˆAKD^=KAD^
\Rightarrow △△ ADK cân tại D
\Rightarrow AD = KD (1)

Lại có : KBAˆ=KBCˆKBA^=KBC^ ( BK là tia phân giác B^B^ )
Mà KBAˆ=BKCˆKBA^=BKC^ ( so le trong )
\Rightarrow KBCˆ=BKCˆKBC^=BKC^
\Rightarrow △△ BCK cân tại C
\Rightarrow BC = CK (2)

Cộng (1) và (2) có :
AD + BC = KD + CK
\Rightarrow AD+BCTổng hai cạnh bên=CDCạnh đáy

Bài 3: 

Xét ΔCBD có CD=CB

nên ΔCBD cân tại C

Suy ra: \(\widehat{CDB}=\widehat{CBD}\)

mà \(\widehat{CDB}=\widehat{ADB}\)

nên \(\widehat{ADB}=\widehat{DBC}\)

mà hai góc này ở vị trí so le trong

nên AD//BC

hay ADCB là hình thang