Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15.27^7.3^8-9^{15}}{4^2.81^8}=\frac{3.5.\left(3^3\right)^7.3^8-\left(3^2\right)^{15}}{\left(2^2\right)^2.\left(3^4\right)^8}\)
\(=\frac{3.5.3^{21}.3^8-3^{30}}{2^4.3^{24}}=\frac{3^{32}.5-3^{30}}{2^4.3^{24}}\)
\(=\frac{3^{30}\left(3^2.5-1\right)}{2^4.3^{24}}=\frac{3^6.44}{2^4}=\frac{3^6.2^2.11}{2^4}=\frac{3^6.11}{2^2}\)
Ta có :\(\frac{15.27^7.3^8-9^{15}}{4^2.81^8}=\frac{3.5.\left(3^3\right)^7.3^8-\left(3^2\right)^{15}}{4^2.\left(3^4\right)^8}=\frac{3.5.3^{21}.3^8-3^{30}}{4^2.3^{32}}=\frac{3^{30}.5-3^{30}}{4^2.3^{32}}=\frac{3^{30}.4}{4^2.3^{32}}=\frac{1}{4.3^2}=\frac{1}{36}\)
Ta có : \(A=8\frac{2}{7}-\left(3\frac{4}{9}+4\frac{2}{7}\right)\)
\(\Rightarrow A=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\)
\(\Rightarrow A=\frac{58}{7}-\frac{487}{63}=\frac{5}{9}\)
P/s:Câu B tương tự nhé
Tiếp B của @Phạm Tuấn Đạt
\(B=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)
\(\Rightarrow B=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)
\(B=\left(\frac{92}{9}-\frac{56}{9}\right)+\frac{13}{5}\)
\(B=\frac{36}{9}+\frac{13}{5}\)
\(B=4+\frac{13}{5}\)
\(B=\frac{20}{5}+\frac{13}{5}=\frac{33}{5}\)
\(A=81.\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)
\(A=81.\left[\frac{12.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4.\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6.\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right].\frac{158}{711}\)
\(A=81.\left(\frac{12}{4}:\frac{5}{6}\right).\frac{2}{9}\)
\(A=81.3.\frac{6}{5}.\frac{2}{9}\)
\(A=\frac{324}{5}\)
Nhớ là: THANKS YOU VERY "MUCH" chứ không phải là THANKS YOU VERY "MATH"!!!
\(A=81.\frac{158158158}{711711711}.\frac{12.\left(\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4.\left(\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5.\left(\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6.\left(\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\)
\(=81.\frac{158}{711}.\frac{12}{4}:\frac{5}{6}=\frac{1422}{79}.3.\frac{6}{5}=\frac{1422.3.6}{79.5}=\frac{25596}{395}\)
=2/10+3/10+4/10+......+13/10
=\(\frac{2+3+4+......+13}{10}\)
=90/10=9
k cho mình nha
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}...\frac{63}{64}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}...\frac{7.9}{8.8}\)
\(=\frac{1.3.2.4.3.5.4.6...7.9}{2.2.3.3.4.4.5.5...8.8}\)
\(=\frac{1.9}{2.8}=\frac{9}{16}\)
Ta có : \(\frac{9^9.32^9}{64^7.27^6}=\frac{\left(3^2\right)^9.\left(2^5\right)^9}{\left(2^7\right)^7.\left(3^3\right)^6}=\frac{3^{18}.2^{45}}{2^{49}.3^{18}}=\frac{1}{2^4}=\frac{1}{16}\)