Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài, ta suy ra:
\(x^2-x+2009\)
\(=\left(x^2-x+\frac{1}{4}\right)+2008,75\)
\(=\left(x-\frac{1}{2}\right)^2+2008,75\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)nên GTNN của biểu thức là 2008,75
\(x^2-x+2019=x^2-x+\frac{1}{4}+\frac{8075}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{8075}{4}\ge\frac{8075}{4}\)
Dấu "=" khi \(x=\frac{1}{2}\)
P=x2+20y2+8xy-4y+2009=(x2+8xy+16y2)+(4y2-4y+1)+2008=(x+4y)2+(2y-1)2+2008 \(\ge\)2008
Dấu "=" xảy ra khi x=-2;y=1/2
Vậy min P=2008
a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x^2-4x+3+11\)
\(=x^2-4x+4+8\)
\(=\left(x-2\right)^2+8\ge8\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=-4x^2+4x+5\)
\(=-\left(4x^2-4x+1-6\right)\)
\(=-\left(2x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
2A=[x2+2xy+y2-2(x+y)+1]+(x2-4x+4)+(y2-4y+4)-2018
=(x+y-1)+(x-2)2+(y-2)2-2018
Min=1006 tai x=2=y
Bài 1: -Sửa đề: a,b,c>0
-Ta c/m: \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
-Vậy BĐT đã được c/m.
-Quay lại bài toán:
\(\sqrt{3\left(ab+bc+ca\right)}\le a+b+c=1\)
\(\Rightarrow3\left(ab+bc+ca\right)\le1\)
\(\Rightarrow ab+bc+ca\le\dfrac{1}{3}< \dfrac{1}{2}\left(đpcm\right)\)
Bài 2:
-Ta c/m BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) với A,B là các phân thức.
\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(\left|A+B\right|\right)^2\)
\(\Leftrightarrow A^2+2\left|A\right|\left|B\right|+B^2\ge A^2+2AB+B^2\)
\(\Leftrightarrow\left|A\right|\left|B\right|\ge AB\) (luôn đúng)
-Vậy BĐT đã được c/m.
-Dấu "=" xảy ra khi \(\left[{}\begin{matrix}A,B\ge0\\A,B\le0\end{matrix}\right.\)
-Quay lại bài toán:
\(P=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=\left|1\right|=1\)
\(P=1\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\le0\end{matrix}\right.\Leftrightarrow2\le x\le3\)
-Vậy \(P_{min}=1\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
P/s: ko chắc
\(P=\frac{x^2-x+1}{x^2+x+1}\)
\(P=\frac{x^2}{x^2+x+1}-\frac{x}{x^2+x+1}+\frac{1}{x^2+x+1}\)
\(P=x^2\cdot\frac{1}{x^2+x+1}-x\cdot\frac{1}{x^2+x+1}+\frac{1}{x^2+x+1}\)
\(P=\frac{1}{x^2+x+1}\left(x^2-x+1\right)\)
\(P=\frac{1}{x^2+x+1}\left[x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right]\)
\(P=\frac{1}{x^2+x+1}\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(P=\frac{1}{x^2+x+1}\cdot\left(x-\frac{1}{2}\right)^2+\frac{1}{x^2+x+1}\cdot\frac{3}{4}\)
Vì \(\frac{1}{x^2+x+1}\cdot\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow P\ge\frac{1}{x^2+x+1}\cdot\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{x^2+x+1}\cdot\left(x-\frac{1}{2}\right)^2\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy...
dễ hơn nè
Ta thấy x2 + x + 1 > 0
Ta có : 2 ( x - 1 )2 \(\ge\)0 \(\Rightarrow\)2x2 - 4x + 2 \(\ge\)0 \(\Rightarrow\)3 ( x2 - x + 1 ) \(\ge\)x2 + x + 1
\(\Rightarrow\frac{x^2-x+1}{x^2+x+1}\ge\frac{1}{3}\) . Dấu " = " xảy ra \(\Leftrightarrow\)x = 1
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg