Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{x-3}\Rightarrow x-3\inƯ\left(1\right)=\left\{\pm1\right\}\)
x-3 | 1 | -1 |
x | 4 | 2 |
\(B=\dfrac{7-x}{x-5}=\dfrac{-\left(x-5-2\right)}{x-5}=\dfrac{-\left(x-5\right)+2}{x-5}\Rightarrow x-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-5 | 1 | -1 | 2 | -2 |
x | 6 | 4 | 7 | 3 |
\(C=\dfrac{5x-19}{x-5}=\dfrac{5\left(x-5\right)+6}{x-5}\Rightarrow x-5\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x-5 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 6 | 4 | 7 | 3 | 8 | 2 | 11 | -1 |
a ) Để A đạt giá trị lớn nhất thì \(x-3\) phải là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Leftrightarrow x=2\)
Khi đó : \(A=\frac{1}{2-3}=-1\)
b ) Ta có : \(B=\frac{7-x}{x-5}=\frac{2-\left(x-5\right)}{x-5}=\frac{2}{x-5}-1\)
Để B nhỏ nhất thì \(\frac{2}{x-5}\) cũng phải nhỏ nhất .
\(\Rightarrow x-5\) là số nguyên âm lớn nhất
\(\Rightarrow x-5=-1\Leftrightarrow x=4\Rightarrow B=-3\)
C ) Để C nhỏ nhất thì \(\frac{1}{x-4}\) cũng phải nhỏ nhất .
\(\Rightarrow x-4\) là số nguyên âm lớn nhất
\(\Rightarrow x-4=-1\Leftrightarrow x=3\Rightarrow C=4\)
Vì A nhỏ nhất nên :
\(\frac{1}{x-3}\) nhỏ nhất
=> x - 3 lớn nhất
=> x lớn nhất
a) A = 1/(x - 3)
1/(x - 3) = -1 <=> x - 3 = -1
x - 3 = -1
x = -1 + 3
x = 2
b) B = (7 - x) / (x - 5) = ( - (x - 5) + 2) / (x - 5)
=>x - 5 \(\in\) Ư(2) = {+/- 1, +/- 2}
Nhưng vì kết quả nhỏ nhất nên B = -2
=>x - 5 = -2
x = -2 + 5
x = 3
c) C = (5x - 19) / (x - 5) = (5(x - 5) + 6) / x - 5
=>x - 5 \(\in\) Ư(6) = {+/-1, +/-2, +/-3, +/-6}
Vì C bé nhất nên C = -6
=>x - 5 = -6
x = -6 + 5
x = -1
Chúc bạn học thật tốt nha! 😉