Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có /x-2016/ lớn hơn hoặc bằng 0 với mọi x
=>1,7-/x-2016/ nhỏ hơn hoặc bằng 1,7
Vậy giá trị lớn nhất của 1,7-/x-2016/là 1,7 đạt được khi x=2016
Ta có:Q=19,5-|1,5-x| < 19,5
=>Qmax=19,5
<=>|1,5-x|=0
=>x=1,5
vậy Qmax=19,5 tại x=1,5
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
Đề là
\(C=\frac{3}{\left|x-1\right|+\left(x-1\right)4+1}+\frac{1}{2}.\)
hay là :
\(C=\frac{3}{\left|x-1\right|+\left(x-1\right)4+1+\frac{1}{2}}\)
\(C=\frac{3}{\left|x+1\right|+\left(x-1\right)^4+1}+\frac{1}{2}\)
Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left(x-1\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left|x-1\right|+\left(x-1\right)^4\ge0\)
\(\Rightarrow\left|x-1\right|+\left(x-1\right)^4+1\ge1\)
\(\Rightarrow\frac{3}{\left|x-1\right|+\left(x-1\right)^4+1}\le\frac{3}{1}=3\)
\(\Rightarrow\frac{3}{\left|\text{x}-1\right|+\left(x-1\right)^4+1}+\frac{1}{2}\le3+\frac{1}{2}=\frac{7}{2}\)
hay \(MaxC=\frac{7}{2}\)
Dấu "=" xảy ra khi \(\left|x-1\right|=\left(x-1\right)^4=0\)
\(\Rightarrow x-1=0\)
\(x=1\)
Vậy \(MaxC=\frac{7}{2}\) tại \(x=1\).
bất đẳng thức trị tuyệt đối
|a|-|b|<=|a-b|
ta có |x|-|x-2|<=|x-x+2|=|2|=2
=> GTLN của A bằng 2
dấu "=" xảy ra (=) x(x-2)>=0
(=)x>=2
#Học-tốt