Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = -1 vào biểu thức đã cho ta được:
(-1) + ( -1)3 + (-1)5 + (-1)7 +...+ (-1)101
= (-1) + (-1) + (-1) + (-1) +(- 1)+ ... + (-1) (51 số -1)
= -51.
Chọn đáp án C
Câu 12. Giá trị của đa thức
x + x3 + x5 + x7 + ... + x101 tại x = -1 là
A. -101. B.
-100 . C.
-51 . D.
-50 .
Câu 13. Trong các biểu thức sau, biểu thức nào không là đơn thức?
A. y4 z6 . B.
-2y4z . C. (yz)10 . D.
-2(y + z) .
Câu 14. Đa thức 6y3 + 6x + 4 - 8x + 5 + 9y3 được thu gọn thành
A. 15y3 + 14x + 9 . B. -3y6 - 2x2 + 9 . C. 15y3 - 2x + 9 . D. 15y3 - 2x -1 .
Câu 15. Đơn thức
- 7 y3x có hệ số và phần biến là:
2
A. - 7
2
và y3x . B. 7 2
và -y3x . C. - 7 2
và -y3x . D. 7 2
và y3x .
Câu 16. Thu gọn và tìm bậc của đa thức -y2 + 4y + 8 - 6y - 6y2 -1:
A. -7y2 +10y + 7 , bậc 3 . B. -7y2 - 2y + 7 , bậc 2 .
C. 5y4 - 2y2 + 7 , bậc 4 . D. -7y2 - 2y - 9 , bậc 2 .
Câu 17. Đa thức (9x3 - 5x - 5) - (4x2 - 5x + 4)
thu gọn là
A. 9x3 - 4x2 -10x - 9 . B. 9x3 - 4x2 - 9 .
C. 9x3 + 4x2 - 9 .
Thay x = 1 vào f(x) ta được
f(1)=1+13+15+17+…+1101
=1+1+1+…+1 =51.1 =51
Thay x = -1 vào f(x) ta được
f(−1)=1+(−1)3+(−1)5+(−1)7+…+(−1)101
=1+(−1)+(−1)+…+(−1)
=1+50.(−1)=1−50=−49
f(1)=1+13+15+17+…+1101
=1+1+1+…+1 =51.1 =51
Thay x = -1 vào f(x) ta được
f(−1)=1+(−1)3+(−1)5+(−1)7+…+(−1)101
=1+(−1)+(−1)+…+(−1)
=1+50.(−1)=1−50=−49
Thay x = 1 vào f(x) ta được
f ( 1 ) = 1 + 1 3 + 1 5 + 1 7 + … + 1 101 = 1 + 1 + 1 + … + 1 ⏟ 51501 = 51.1 = 51
Thay x = -1 vào f(x) ta được
f ( − 1 ) = 1 + ( − 1 ) 3 + ( − 1 ) 5 + ( − 1 ) 7 + … + ( − 1 ) 101 = 1 + ( − 1 ) + ( − 1 ) + … + ( − 1 ) ⏟ 50 : 0 ( − 1 ) = 1 + 50. ( − 1 ) = 1 − 50 = − 49 Vây f ( 1 ) = 51 ; f ( − 1 ) = − 49
Chọn đáp án B
a.\(P\left(x\right)=1+3x^5-4x^2+x^5+x^3-x^2+3x^3\)
\(=1-5x^2+4x^3+4x^5\)
\(Q\left(x\right)=2x^5-x^2+4x^5-x^4+4x^2-5x\)
\(=-5x+3x^2+3x^4+2x^5\)
b.\(P\left(x\right)+Q\left(x\right)=1-5x^2+4x^3+4x^5-5x+3x^2+3x^4+2x^5\)
\(=6x^5+3x^4+4x^3-2x^2-5x+1\)
\(P\left(x\right)-Q\left(x\right)=1-5x^2+4x^3+4x^5+5x-3x^2-3x^4-2x^5\)
\(=2x^5-3x^4+4x^3-8x^2+5x+1\)
c.\(P\left(x\right)+Q\left(x\right)=6x^5+3x^4+4x^3-2x^2-5x+1\)
\(x=-1\)
\(P\left(x\right)+Q\left(x\right)=6.\left(-1\right)^5+3.\left(-1\right)^4+4.\left(-1\right)^3-5.\left(-1\right)+1\)
\(=-6+3-4+5+1=-1\)
d.\(Q\left(0\right)=\)\(-5x+3x^2+3x^4+2x^5\)
\(=0\)
\(P\left(0\right)=\)\(1-5x^2+4x^3+4x^5\)
\(=1\)
Vậy x=0 ko là nghiệm của đa thức P(x)
\(P\left(x\right)=x+x^3+x^5+x^7+...+x^{101}\)
Ta có: \(x=-1\text{ }\Rightarrow\text{ }x=x^3=x^5=x^7=...=x^{101}=-1\), thay vào đa thức \(P\left(x\right)\), ta có:
\(P\left(x\right)=\left(-1\right)\cdot51=-51\)
Vậy \(P\left(x\right)=-51\) khi \(x=-1\).
\(\text{안녕하세요}\)
Số số hạng của dãy \(\frac{101-1}{2}+1=51\)
Vì x=-1 và các số hạng trong đa thức P(x) đều mang mũ lẽ nên P(x)=(-1)+(-1)+(-1)+...+(-1) ( 51 số hạng ) = (-1) *51=-51
k mk nha