K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

Ta có : \(x^2+y^2+z^2=xy+yz+zx\)

   \(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)

  \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

 \(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+\left(y^2-2yz+z^2\right)=0\)

 \(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)(1)

\(\text{Mà}\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-z\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(2)

\(\text{Từ (1) và (2)}\Rightarrow x-y=y-z=z-x=0\)

                         \(\Rightarrow x=y=z\left(ĐPCM\right)\)

14 tháng 7 2018

a) A=x2-x+1

A = x2 -2 . x . \(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+1-\(\dfrac{1}{4}\)

A =\(\left(x-\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\)

\(\dfrac{3}{4}\)>0

=> \(\left(x-\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)>0

=> A>0 => A dương.

b) B=4x2+8x+7

=(2x)2+2.2x.2+4+3

=(2x+2)2+3

Mà (2x+2)2+3>0 \(\forall x\)

=> B>0

11 tháng 12 2022

(xyz)^2=(24*48*72)=82944

=>xyz=288 hoặc xyz=-288(loại)

xyz=288

=>z=12; y=6; x=4

=>(x-3)^2017+(y-5)^2018+(z-11)^2019=1+1+1=3

 

8 tháng 4 2016

\(a.\)

Phân tích biển đổi thành nhân tử kết hợp với chuyển vế để quy về hẳng đẳng thức, khi đó, ta tính được  \(a,b\)

Thật vậy, ta có:

\(a^2-2a+6b+b^2=-10\)

\(\Leftrightarrow\)  \(a^2-2a+6b+b^2+10=0\)

\(\Leftrightarrow\)  \(\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\)  \(\left(a-1\right)^2+\left(b+3\right)^2=0\)   \(\left(1\right)\)

Vì  \(\left(a-1\right)^2\ge0;\)  \(\left(b+3\right)^2\ge0\)  với mọi  \(a,b\)

nên để thỏa mãn đẳng thức \(\left(1\right)\)  thì phải xảy ra đồng thời  \(\left(a-1\right)^2=0\)  và  \(\left(b+3\right)^2=0\)

\(\Leftrightarrow\)  \(a-1=0\)  và  \(b+3=0\)  \(\Leftrightarrow\)  \(a=1\)  và  \(b=-3\)

\(b.\)  Cộng  \(1\) vào mỗi phân thức của biểu thức  \(A\), khi đó, ta có:

\(A+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

\(A+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\)  (do  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))

Vậy,  \(A=-3\)

9 tháng 4 2016

Viết rõ hơn được không bạn

15 tháng 10 2017

\(P=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xyz+xz+z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))

\(=\frac{xz}{xz+z+1}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))

\(=\frac{xz+z+1}{xz+z+1}=1\)