K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)(ĐK:a,b,c khác 0)

TH1: a+b+c=0=> a=-(b+c)=> b=-(a+c)=> c=-(a+b)

\(\Rightarrow B=\left(\frac{a-a-c}{a}\right)\left(\frac{c-b-c}{c}\right)\left(\frac{b-a-b}{b}\right)=\frac{-c}{a}.\left(-\frac{b}{c}\right).\left(-\frac{a}{b}\right)=-1\)

xét a+b+c khác 0

=> a=b=c

=> \(B=\left(1+\frac{a}{a}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{c}{c}\right)=2^3=8\)

Vậy B=-1 hay B=8

p/s: bài này gây khá nhiều tranh cãi :> 

25 tháng 4 2020

Có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\). Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\Rightarrow a=2c-b\\b+c=2a\left(1\right)\\c+a=2b\left(2\right)\end{cases}}\)

Thay a=2c-b vào (1) và (2) ta được

\(\hept{\begin{cases}b+c=2\left(2c-b\right)\\c+\left(2c-b\right)=2b\end{cases}\Rightarrow b=c\Rightarrow a=c}\)

Vậy a=b=c

Khi đó: \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Nguồn: GV

25 tháng 4 2020

Bảo Ngọc Đàm Bạn có chắc là ad đc tcdtsbn vs mọi a ; b ; c đôi một khác nhau ko ạ ?
nguyễn thị kim oanh              Trình bày bài kia là trg hợp 1 : a + b +  c ≠ 0 

Trường hợp 2 : a + b + c = 0 

~ Tự lm ~

16 tháng 3 2017

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{b}{a}=1;\frac{a}{c}=1;\frac{c}{b}=1\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

14 tháng 1 2018

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2013\)

<=>\(\frac{\left(b-a\right)-\left(c-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(c-a\right)\left(c-b\right)}=2013\)

<=>\(\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}=2013\)

<=>\(2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)

<=>\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}=1006,5\)

18 tháng 12 2016

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)

Xét a+b+c=0

\(\Rightarrow a+b=-c,c+b=-a,a+c=-b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)

Xét a+b+c\(\ne0\)

\(\Rightarrow a+b=2c,b+c=2a,c+a=2b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{2c}{b}\cdot\frac{2a}{c}\cdot\frac{2b}{a}=8\)

 

18 tháng 12 2016

Giải:
+) Xét a + b + c = 0

\(\Rightarrow-a=b+c\)

\(\Rightarrow-b=a+c\)

\(\Rightarrow-c=a+b\)

Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{-c}{c}=\frac{-a}{a}=\frac{-b}{b}=-1\)

Lại có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=-1\)

+) Xét \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Ta có:

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)

Vậy M = -1 hoặc M = 8

17 tháng 12 2019

Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath