Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x+\left(-12\right)=\left(-24\right)+\left(-12\right)=-36\\ b,\left(-234\right)+y=\left(-234\right)+\left(-145\right)=-379\\ c,x+\left(-12\right)+\left(-234\right)=\left(-1\right)+\left(-12\right)+\left(-234\right)=-247\)
a) Ta có: \(A=-34x+34y\)
\(=-34\left(x-y\right)\)
Thay x-y=2 vào biểu thức A=-34(x-y), ta được:
\(A=-34\cdot2=-68\)
Vậy: Khi x-y=2 thì A=68
b) Ta có: \(B=ax-ay+bx-by\)
\(=a\left(x-y\right)+b\left(x-y\right)\)
\(=\left(x-y\right)\left(a+b\right)\)
Thay a+b=-7 và x-y=-1 vào biểu thức \(B=\left(x-y\right)\left(a+b\right)\), ta được:
\(B=-1\cdot\left(-7\right)=7\)
Vậy: Khi a+b=-7 và x-y=-1 thì B=7
a, 4 + (-16)
= 4 - 16 (Vì 16 là số đối của -16)
= -12
b, (-102) + 2
(-102) - (-2) (Vì 2 là số đối của -2)
= -100
Mình không biết đâu, cô giáo mình dạy trình bày kiểu này
**Tìm giá trị nhỏ nhất của biểu thức
Lời giải:
$(x-2)^2\geq 0$ với mọi $x$
$|y-x|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow A=(x-2)^2+|y-x|+3\geq 3$
Vậy GTNN của $A$ là $3$. Giá trị này đạt tại $(x-2)^2=|y-x|=0$
$\Leftrightarrow x=y=2$
a) Thay x=-4 vào biểu thức, ta được:
x+ (-16)= -4+ (-16)= -(4+16)= -20
b) Thay y=2 vào biểu thức, ta được:
(-102)+y= (-102)+ 2= -(102-2)= -100
a) x + (-16), biết x = -4
Thay x = -4 vào biểu thức: x + (-16).
= (-4) + (-16)
= -20
b) (-102) + y, biết y = 2
Thay y = 2 vào biểu thức: (-102) + y.
= (-102) + 2
= -100
a. Thay x=-4 vào biểu thức, ta có:
\(-4+\left(-16\right)=-4-16=-\left(4+16\right)=-20\)
b. Thay y=2 vào biểu thức, ta có:
\(\left(-102\right)+2=-\left(102-2\right)=-100\)
a ) Thay \(x=-4\)
Ta có : \(\left(-4\right)+\left(-16\right)=-20\)
b ) Thay \(y=2\)
Ta có : \(\left(-102\right)+2=-100\)