K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b},\)ta có :

\(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=1+\frac{c}{a-b}.\frac{b^2-bc+ac-a^2}{ab}\)

\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)

Tương tự : \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc},M.\frac{b}{c-a}=1+\frac{2b^3}{abc}.\)

Vậy \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=9\)

10 tháng 10 2018

Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)      ta có :

\(M\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\)

\(=1+\frac{c}{a-b}.\frac{b^2-bc+ac-a^2}{ab}\)

\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}\)

\(=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)

Tương tự  \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc}\)

và  \(M.\frac{b}{c-a}=1+\frac{2b^3}{abc}\)

Vậy \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=9\)

( Vì \(a^3+b^3+c^3=3abc\).  Lại do  . ( Phân tích là ra hết ).\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

=> ....

6 tháng 10 2019

bài này trong sách nâng cao phát triển tập 1 

27 tháng 5 2016

Cách 1 . \(A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)

Đặt \(\frac{a-b}{c}=x\)\(\frac{b-c}{a}=y\) ; \(\frac{c-a}{b}=z\)

Ta có : \(\frac{x+y}{z}=\frac{\frac{a-b}{c}+\frac{b-c}{a}}{\frac{c-a}{b}}=\frac{ab\left(a-b\right)+cb\left(b-c\right)}{ac\left(c-a\right)}=\frac{b\left(b-a-c\right)}{ac}=\frac{2b^2}{ac}=\frac{2b^3}{abc}\)

tương tự : \(\frac{y+z}{x}=\frac{2c^3}{abc}\)\(\frac{x+z}{y}=\frac{2a^3}{abc}\)

\(\Rightarrow A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1\)

\(=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Áp dụng bài toán phụ : Nếu a + b + c = 0 thì \(a^3+b^3+c^3=3abc\) (có thể chứng minh bằng cách rút a = - b - c  rồi thay vào tổng ba lập phương) được : 

\(A=3+\frac{2}{abc}.3abc=3+6=9\)

27 tháng 5 2016

Đặt \(\frac{a-b}{c}=x=>\frac{c}{a-b}=\frac{1}{x}\)

\(\frac{b-c}{a}=y=>\frac{a}{b-c}=y\)

\(\frac{c-a}{b}=z=>\frac{b}{c-a}=\frac{1}{z}\)

=>\(A=\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=>\(A=x.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+y.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+z.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=>\(A=1+\frac{x}{y}+\frac{x}{z}+1+\frac{y}{x}+\frac{y}{z}+1+\frac{z}{x}+\frac{z}{y}\)

=>\(A=3+\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)

=>\(A=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\)

Lại có: \(\frac{x+z}{y}=\frac{\frac{a-b}{c}+\frac{c-a}{b}}{\frac{b-c}{a}}=\frac{\frac{ab-b^2}{bc}+\frac{c^2-ac}{bc}}{\frac{b-c}{a}}=\frac{\frac{ab-b^2+c^2-ac}{bc}}{\frac{b-c}{a}}\)

\(=\frac{\frac{\left(ab-ac\right)-\left(b^2-c^2\right)}{bc}}{\frac{b-c}{a}}=\frac{\frac{a.\left(b-c\right)-\left(b+c\right).\left(b-c\right)}{bc}}{\frac{b-c}{a}}=\frac{\frac{\left(a-b-c\right).\left(b-c\right)}{bc}}{\frac{b-c}{a}}\)

\(=\frac{\left(a-b-c\right).\left(b-c\right).a}{\left(b-c\right).bc}=\frac{\left(a-b-c\right).a}{bc}=\frac{\left(a+a-a-b-c\right).a}{bc}\)

\(=\frac{\left[2a-\left(a+b+c\right)\right].a}{bc}\)

Vì a+b+c=0

=>\(\frac{x+z}{y}=\frac{\left(2a-0\right).a}{bc}=\frac{2a^2}{bc}=\frac{2a^3}{abc}\)

Chứng minh tương tự, ta có:

\(\frac{x+y}{z}=\frac{2b^3}{abc}\)

\(\frac{y+z}{x}=\frac{2c^3}{abc}\)

=>\(A=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}=3+\frac{3a^3}{abc}+\frac{3b^3}{abc}+\frac{3c^3}{abc}\)

=>\(A=3+\frac{2a^3+2b^3+2c^3}{abc}\)

=>\(A=3+\frac{2.\left(a^3+b^3+c^3\right)}{abc}\)

Vì a+b+c=0

=>a=-(b+c)

=>\(a^3=\left[-\left(b+c\right)\right]^3\)

=>\(a^3=-\left(b+c\right)^3\)

=>\(a^3=-\left[b^3+3bc.\left(b+c\right)+c^3\right]\)

=>\(a^3=-b^3-3bc.\left(b+c\right)-c^3\)

=>\(a^3+b^3+c^3=-3bc.\left(b+c\right)\)

Vì a+b+c=0=>b+c=-a

=>\(a^3+b^3+c^3=-3bc.\left(-a\right)\)

=>\(a^3+b^3+c^3=3abc\)

Thay vào A, ta có:

\(A=3+\frac{2.\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=3+\frac{6.abc}{abc}=3+6=9\)

=>A=9

Vậy A=9

13 tháng 7 2016

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

  • TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
  • TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^

6 tháng 11 2019

Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)

Ta có \(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\)

\(=1+\frac{c}{a-b}.\frac{b^2-bc+ca-a^2}{ab}\)

\(=1+\frac{c}{a-b}.\frac{\left(b-a\right)\left(a+b-c\right)}{ab}=1+\frac{2c^2}{ab}\)

Tương tự : \(M.\frac{a}{b-c}=1+\frac{2a^2}{bc};M.\frac{b}{c-a}=1+\frac{2b^2}{ca}\)

Do vậy \(A=3+2.\frac{a^3+b^3+c^3}{abc}=9\left(do.a+b+c=0.thi.a^3+b^3+c^3=3abc\right)\)

13 tháng 8 2020

Đặt \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=A\)

Ta có:\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

<=> \(\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)

<=> \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(b-c\right)\left(c-a\right)}+\frac{c}{\left(b-c\right)\left(a-b\right)}+\frac{a}{\left(b-c\right)\left(c-a\right)}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)\left(c-a\right)}+\frac{a}{\left(a-b\right)\left(b-c\right)}+\frac{b}{\left(a-b\right)\left(c-a\right)}+\frac{c}{\left(a-b\right)^2}=0\)

<=> \(A+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}+\frac{c+b}{\left(a-b\right)\left(c-a\right)}=0\)

<=> \(A+\frac{\left(a+b\right)\left(a-b\right)+\left(c-a\right)\left(c+a\right)+\left(c+b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

<=> \(A+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

<=> \(A=0\)

=> ....

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

27 tháng 12 2018

dễ!Ta có:

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)

Chứng minh tương tự,Ta được:

\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\end{cases}}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)\(\Rightarrow\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}\)

Xong!