Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^4-2x^3+3x^2-2x+2\)
\(=x^4-x^3-x^3+x^2+2x^2-2x+2\)
\(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+ 2\left(x^2-x\right)+2\)
\(=\left(x^2-x\right)\left(x^2-x+2\right)+2\)
Thay \(x^2-x=4\)vào M ta đc:
\(M=4.\left(4+2\right)+2\)
\(=4.6+2\)
\(=26\)
M = (x^4-x^3)-(x^3-x^2)+(2x^2-2x)+2
= x^2.(x^2-x)-x.(x^2-x)+2.(x^2-x)+2
= (x^2-x).(x^2-x+2)+2
Thay x^2-x=4 thì :
M = 4.(4+2)+2 = 26
Tk mk nha
\(M=x^4-2x^3+3x^2-x+2\)
\(M=x^4-x^3+x^2+2x^2-2x+2\)
\(M=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)
\(M=\left(x^2-x\right)\left(x^2-x+2\right)+2\)
\(M=4.\left(4+2\right)+2\)( Vì \(x^2-x=4\))
\(M=24+2=26\)
Vậy M = 26 khi \(x^2-x=4\)
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
Ta có M = x4 - 2x3 + 3x2 - 2x + 2
= x4 - x3 - x3 + x2 + 2x2 - 2x +2
= x2( x2 - x ) - x( x2 - x ) + 2( x2 - x ) + 2
= ( x2 - x + 2 )( x2 - x ) + 2
= ( 4 + 2 )*2 + 2 = 14
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
\(ĐK:x\ne\pm1;x\ne0;x\ne3\)
Với \(x\ne\pm1;x\ne0;x\ne3\)thì\(M=\frac{x^3+2x^2-x-2}{x^3-2x^2-3x}\left[\frac{\left(x+2\right)^2-x^2}{4x^2-4}-\frac{3}{x^2-x}\right]=\frac{x^2\left(x+2\right)-\left(x+2\right)}{\left(x^3-x\right)-\left(2x^2+2x\right)}\left[\frac{x^2+4x+4-x^2}{4x^2-4}-\frac{3}{x\left(x-1\right)}\right]\)\(=\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x-1\right)-2x\left(x+1\right)}\left[\frac{4\left(x+1\right)}{4\left(x+1\right)\left(x-1\right)}-\frac{3}{x\left(x-1\right)}\right]=\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-3x\right)}\left[\frac{1}{x-1}-\frac{3}{x\left(x-1\right)}\right]\)\(=\frac{\left(x-1\right)\left(x+2\right)}{x\left(x-3\right)}.\frac{x-3}{x\left(x-1\right)}=\frac{x+2}{x^2}\)
M = 3 \(\Leftrightarrow\frac{x+2}{x^2}=3\Leftrightarrow3x^2-x-2=0\Leftrightarrow\left(x-1\right)\left(3x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}\)
Mà \(x\ne1\)(theo điều kiện) nên x =-2/3
Ta có: \(C=x^4-2x^3+3x^2-2x+2\)
\(=x^4-x^3-x^3+x^2+2x^2-2x+2\)
\(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)
\(=8x^2-8x+2+2\)
\(=8x^2-8x+4\)
a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)
\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)
\(=-17x+18\)
Tính giá trị biểu thức là " Nhân :hay " Chia " hay " Cộng" hay Trừ " vậy .