K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

Ta có:

         \(x^2+y^2+5+2x-4y\)

\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)\)

\(=\left(x+1\right)^2+\left(y-2\right)^2\)\(>0\)

\(\Rightarrow\)\(\left|x^2+y^2+5+2x-4y\right|=\left(x+1\right)^2+\left(y-2\right)^2\)

         \(-\left(x+y-1\right)^2\)\(< 0\)

\(\Rightarrow\)\(\left|-\left(x+y-1\right)^2\right|=\left(x+y-1\right)^2\)

     \(\left|x^2+y^2+5+2x-4y\right|-\left|-\left(x+y-1\right)^2\right|+2xy\)

\(=\left(x+1\right)^2+\left(y-2\right)^2-\left(x+y-1\right)^2+2xy\)  

\(=4x-2y+4\)   (rút gọn nha)

\(=4.2^{2011}-2.16^{503}+4\)

\(=2^{2013}-2^{2013}+4=4\)

P/s:  bn tham khảo nhé, mk ko biết đúng or sai, lm bừa

1 tháng 3 2019

dạ mơn nha

28 tháng 3 2021

A=|x2+y2+5+2x-4y|-|-(x+y-1)2|+2xy

<=>A=||(x²+2x+1)+(y²-4y+4)| - (x+y-1)² + 2xy

= |(x+1)²+(y-2)²| - (x+y-1)² + 2xy

= (x+1)²+(y-2)²-(x+y-1)²+2xy

Đặt x+1=a và y-2=b

=> A = a² + b² - (a+b)² + 2(a-1).(b+2)

= a² + b² - a² - 2ab - b² - 2ab + 4a - 2b - 2

= 4a - 2b - 2

= 4(x + 1)-2(y-2)-2

= 4x+4-2y-4-2

= 4x-2y-2

Thay x = 2²⁰¹⁹ và y = 16⁵⁰³ = 2²⁰¹² vào A, ta có:

A = 4.2²⁰¹⁹ - 2.2²⁰¹² - 2

= 2²⁰²¹ - 2²⁰¹³ - 2

8 tháng 2 2022

A=\(\left|x^2+y^2+5+2x-4y\right|-\left|-\left(x+y-1\right)^2+2xy\right|\)

\(\Leftrightarrow A=x^2+y^2+5+2x-4y-\left|-\left(x^2+2xy-2x-2y+y^2+1\right)\right|+2xy\)

\(\Leftrightarrow A=x^2+y^2+5+2x-4y+x^2-2xy+2x+2y-y^2-1+2xy\)

\(\Leftrightarrow A=2x^2-4+4x-2y\)

thay \(x=2^{2011};y=16^{503}\) vào A ta được:

\(2.\left(2^{2011}\right)^2-4+4.\left(2^{2011}\right)-2.\left(16^{503}\right)\)

A không có giá trị

 

17 tháng 8 2021

undefined

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

15 tháng 7 2019

bài 2: a bạn có thể thêm bớt y^2 vào vế bên phải

bài 2 c thì bạn có thể mở ngoặc ở vế phải rồi tính sau đó áp dụng hđt

7 tháng 11 2015

\(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{\left(2011+11\right)\left(2011^2+11^2-11.2011\right)}{\left(2011+200\right)\left(2011^2+2000^2-2000.2011\right)}\)

Cần chứng minh \(2011^2+11^2-2011.11=2011^2+2000^2-2000.2011\)

Điều này không khó.

\(B=1-\frac{2}{x}+\frac{2011}{x^2}=2011t^2-2t+1\text{ (với }t=\frac{1}{x}\text{)}\)

->Gộp hằng đẳng thức....

\(A=\left|\left(x+1\right)^2+\left(y-2\right)^2\right|-\left(x+y-1\right)^2+2xy\)

\(=\left(x+1\right)^2+\left(y-2\right)^2-\left(x^2+y^2-2x-2y+2xy+1\right)+2xy\)

\(=4x-2y+4\)

thay số.Lưu ý: \(y=16^{503}=\left(2^4\right)^{503}=2^{2012}\)

23 tháng 12 2018

1/ 

a) \(x^2+4y^2+4xy-16\)

\(=x^2+2.2xy+\left(2y\right)^2-4^2\)

\(=\left(x+2y\right)^2-4^2\)

\(=\left(x+2y-4\right)\left(x+2y+4\right)\)

23 tháng 12 2018

b) ta có:

\(\left(2x+y\right)\left(y-2x\right)+4x^2\)

\(=-\left(2x-y\right)\left(2x+y\right)+4x^2\)

\(=\left(2x\right)^2-\left[\left(2x\right)^2-y^2\right]\)

\(=\left(2x\right)^2-\left(2x\right)^2+y^2\)

\(=y^2\)

Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của x

nên tại y = 10

giá trị của biểu thức trên bằng y2 = 102 = 100

20 tháng 11 2023

1: \(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\)

\(=\dfrac{\left(x+y\right)^2-4xy}{x+y}:\left(\dfrac{x}{x+y}-\dfrac{y}{x-y}+\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)

\(=\dfrac{x^2+2xy+y^2-4xy}{x+y}:\dfrac{x\left(x-y\right)-y\left(x+y\right)+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2-2xy+y^2}{x+y}:\dfrac{x^2-xy-xy-y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)^2}{x+y}\cdot\dfrac{x^2-y^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}\)

2: \(\left(x^2-y^2\right)\cdot C=-8\)

=>\(\left(x-y\right)\left(x+y\right)\cdot\dfrac{\left(x-y\right)^2}{x+y}=-8\)

=>\(\left(x-y\right)^3=-8\)

=>x-y=-2

=>x=y-2

\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\)

\(=\left(y-2\right)^2\left(y-2+1\right)-y^2\left(y-1\right)-3xy\left(-2+1\right)+xy\)

\(=\left(y-1\right)\left[\left(y-2\right)^2-y^2\right]+3xy+xy\)

\(=\left(y-1\right)\left(-4y+4\right)+4xy\)

\(=-4\left(y-1\right)^2+4y\left(y-2\right)\)

\(=-4y^2+8y-4+4y^2-8y\)
=-4

20 tháng 11 2023

Em cảm ơn ạ.