Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(B=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\left(x+\sqrt{x}+1+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
được bạn ạ mình nhờ thầy giải ra mà bạn tính máy tính mới ko ra thôi
\(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\)\(\times\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\times\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\times\sqrt{2-\sqrt{2+\sqrt{3}}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{4-2-\sqrt{3}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2-\sqrt{3}}\)
= \(\sqrt{4-3}\)
= 1
a) \(A=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+-\sqrt{3}-1=-2\)
b) \(B=\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)
\(=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left|3-\sqrt{2}\right|-\left|\sqrt{2}-1\right|\)
\(=3-\sqrt{2}-\sqrt{2}+1=4-2\sqrt{2}\)
c) \(C=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{5}+\sqrt{3}\right)\left|\sqrt{5}-\sqrt{2}\right|\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{2}\right)=5-\sqrt{10}+\sqrt{15}-\sqrt{6}\)
\(R=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\\ =\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\\ =\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\\ =\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\\ =\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\\ =\sqrt{4-3}=1\)
\(=\left[\left(2-\sqrt{2}\right)^2-3\right]\cdot\left(3+\sqrt{2}\right)\cdot\left(\sqrt{2}-1\right)\)
\(=\left(6-4\sqrt{2}-3\right)\left(3\sqrt{2}-3+2-\sqrt{2}\right)\)
\(=\left(3-4\sqrt{2}\right)\left(2\sqrt{2}-1\right)\)
\(=6\sqrt{2}-3-16+4\sqrt{2}=10\sqrt{2}-19\)