\((1/4^2).32^2\)

e, \(2^3...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

Toàn bộ đều tìm Max :)

D = -x2 + 30x - 10

D = -( x2 - 30x + 225 ) + 215

D = -( x - 15 )2 + 215

-( x - 15 )2 ≤ 0 ∀ x => -( x - 15 )2 + 215 ≤ 215

Đẳng thức xảy ra <=> x - 15 = 0 => x = 15

=> MaxD = 215 <=> x = 15

E = -2x2 + 9x + 30

E = -2( x2 - 9/2x + 81/16 ) + 321/8

E = -2( x - 9/4 )2 + 321/8

-2( x - 9/4 )2 ≤ 0 ∀ x => -2( x - 9/4 )2 + 321/8 ≤ 321/8

Đẳng thức xảy ra <=> x - 9/4 = 0 => x = 9/4

=> MaxE = 321/8 <=> x = 9/4

F = -5x2 - 20x - 4

F = -5( x2 + 4x + 4 ) + 16

F = -5( x + 2 )2 + 16

-5( x + 2 )2 ≤ 0 ∀ x => -5( x + 2 )2 + 16 ≤ 16

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MaxF = 16 <=> x = -2

19 tháng 8 2020

d) \(D=-x^2+30x-10\)

\(D=-\left(x^2-30x+10\right)\)

\(D=\left(x^2-30x+225-215\right)\)

\(D=-\left(x-15\right)^2+215\le215\)

Max D = 215 \(\Leftrightarrow x=15\)

e) \(E=-2x^2+9x+30\)

\(E=-2\left(x^2-\frac{9}{2}x-15\right)\)

\(E=-2\left(x-\frac{9}{4}\right)^2+\frac{321}{8}\le\frac{321}{8}\)

Max \(E=\frac{321}{8}\Leftrightarrow x=\frac{9}{4}\)

f) \(F=-5x^2-20x-4\)

\(F=-5\left(x^2+4x+\frac{4}{5}\right)\)

\(F=-5\left(x^2+4x+4+\frac{16}{5}\right)\)

\(F=-5\left(x+2\right)^2-16\le-16\)

Max F = -16 \(\Leftrightarrow x=-2\)

6 tháng 1 2019

Ta có: y= f(x) = |x| + 1

               f(1) = |1| + 1 = 1 + 1 = 2 => y1 = y2 = 2

               f(2) = |2| + 1 = 2 + 1 = 3 => y3 = 3

               f(3) = |3| + 1 = 3 + 1 = 4 => y4 = 4

              ...

               f(2018) = |2018| + 1 = 2018 + 1 = 2019 => y2019 = 2019

Do đó: A = y1 + y2 + y3 + ... +  y2019

               = 2 + 2 + 3 + ... + 2019

               = 2 + (2 + 3 + ... + 2019)

Tổng 2 + 3 + ... + 2019 có số số hạng là: 2019 - 2 + 1 = 2018

 Suy ra: A = 2 + [(2 + 2019) . 2018 : 2] 

                 = 2 + 2 039 189

                 = 2 039 191

 
24 tháng 4 2019

\(A=12x^{11}-15x^7-6x^5+2018\)

    \(=3x^5.\left(4x^6-3x^2-2\right)+2018\)

     \(=3x^5.0+2018\)

    \(=2018\)

28 tháng 8 2020

đề có sai ko bạn

28 tháng 8 2020

\(\frac{27^2.8^5}{6^6.32^3}=\frac{\left(3^3\right)^2.\left(2^3\right)^5}{2^3.3^3.\left(2^5\right)^3}=\frac{3^6.2^{15}}{2^3.3^3.2^{15}}=\frac{27}{8}\)

học tốt

3 tháng 8 2020

Cảm ơn bạn rất rất nhiều hihi

1 tháng 8 2020

Bài 2b

Thay x = -1; y = 1 vào N ta đc:

\(N=\left(-1\right).1+\left(-1\right)^2.1^2+\left(-1\right)^3.1^3+\left(-1\right)^4.1^4+\left(-1\right)^5.1^5\)

\(=\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)\)

\(=-1\)

15 tháng 4 2019

a) \(\begin{cases}\left(x+2\right)^2\ge0\\\left(y-\frac{1}{5}\right)^2\ge0\end{cases}\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10=-10\)hay \(C\ge-10\)

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

Vậy GTNN C là -10 khi \(\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}.}\)

b)\(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0+5=5\)

\(\Rightarrow\frac{4}{\left(2x-3\right)^2-5}\le\frac{4}{5}\Leftrightarrow D\le\frac{4}{5}\)

Dấu "=" xảy ra khi:

\(\left(2x-3\right)^2=0\Rightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)

Vậy GTLN D là \(\frac{4}{5}\)khi \(x=\frac{3}{2}.\)

17 tháng 4 2019

thank bạn nha

24 tháng 7 2019

\(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)

24 tháng 7 2019

a, \(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{4+6}}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)

b,\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}\)

c, \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^6}{3^5.2^{11}}=\frac{3}{2^4}\)

d, \(\frac{6^3+3.6^2+3^3}{-13}=\frac{\left(2.3\right)^3+3\left(2.3\right)^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}\)

\(=\frac{2^3.3^3+3^3.2^2+3^3}{-13}=\frac{3^9\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=3^3=27\)