Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toàn bộ đều tìm Max :)
D = -x2 + 30x - 10
D = -( x2 - 30x + 225 ) + 215
D = -( x - 15 )2 + 215
-( x - 15 )2 ≤ 0 ∀ x => -( x - 15 )2 + 215 ≤ 215
Đẳng thức xảy ra <=> x - 15 = 0 => x = 15
=> MaxD = 215 <=> x = 15
E = -2x2 + 9x + 30
E = -2( x2 - 9/2x + 81/16 ) + 321/8
E = -2( x - 9/4 )2 + 321/8
-2( x - 9/4 )2 ≤ 0 ∀ x => -2( x - 9/4 )2 + 321/8 ≤ 321/8
Đẳng thức xảy ra <=> x - 9/4 = 0 => x = 9/4
=> MaxE = 321/8 <=> x = 9/4
F = -5x2 - 20x - 4
F = -5( x2 + 4x + 4 ) + 16
F = -5( x + 2 )2 + 16
-5( x + 2 )2 ≤ 0 ∀ x => -5( x + 2 )2 + 16 ≤ 16
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxF = 16 <=> x = -2
d) \(D=-x^2+30x-10\)
\(D=-\left(x^2-30x+10\right)\)
\(D=\left(x^2-30x+225-215\right)\)
\(D=-\left(x-15\right)^2+215\le215\)
Max D = 215 \(\Leftrightarrow x=15\)
e) \(E=-2x^2+9x+30\)
\(E=-2\left(x^2-\frac{9}{2}x-15\right)\)
\(E=-2\left(x-\frac{9}{4}\right)^2+\frac{321}{8}\le\frac{321}{8}\)
Max \(E=\frac{321}{8}\Leftrightarrow x=\frac{9}{4}\)
f) \(F=-5x^2-20x-4\)
\(F=-5\left(x^2+4x+\frac{4}{5}\right)\)
\(F=-5\left(x^2+4x+4+\frac{16}{5}\right)\)
\(F=-5\left(x+2\right)^2-16\le-16\)
Max F = -16 \(\Leftrightarrow x=-2\)
Ta có: y= f(x) = |x| + 1
f(1) = |1| + 1 = 1 + 1 = 2 => y1 = y2 = 2
f(2) = |2| + 1 = 2 + 1 = 3 => y3 = 3
f(3) = |3| + 1 = 3 + 1 = 4 => y4 = 4
...
f(2018) = |2018| + 1 = 2018 + 1 = 2019 => y2019 = 2019
Do đó: A = y1 + y2 + y3 + ... + y2019
= 2 + 2 + 3 + ... + 2019
= 2 + (2 + 3 + ... + 2019)
Tổng 2 + 3 + ... + 2019 có số số hạng là: 2019 - 2 + 1 = 2018
Suy ra: A = 2 + [(2 + 2019) . 2018 : 2]
= 2 + 2 039 189
= 2 039 191
\(A=12x^{11}-15x^7-6x^5+2018\)
\(=3x^5.\left(4x^6-3x^2-2\right)+2018\)
\(=3x^5.0+2018\)
\(=2018\)
\(\frac{27^2.8^5}{6^6.32^3}=\frac{\left(3^3\right)^2.\left(2^3\right)^5}{2^3.3^3.\left(2^5\right)^3}=\frac{3^6.2^{15}}{2^3.3^3.2^{15}}=\frac{27}{8}\)
học tốt
Bài 2b
Thay x = -1; y = 1 vào N ta đc:
\(N=\left(-1\right).1+\left(-1\right)^2.1^2+\left(-1\right)^3.1^3+\left(-1\right)^4.1^4+\left(-1\right)^5.1^5\)
\(=\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)\)
\(=-1\)
a) \(\begin{cases}\left(x+2\right)^2\ge0\\\left(y-\frac{1}{5}\right)^2\ge0\end{cases}\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10=-10\)hay \(C\ge-10\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Vậy GTNN C là -10 khi \(\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}.}\)
b)\(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0+5=5\)
\(\Rightarrow\frac{4}{\left(2x-3\right)^2-5}\le\frac{4}{5}\Leftrightarrow D\le\frac{4}{5}\)
Dấu "=" xảy ra khi:
\(\left(2x-3\right)^2=0\Rightarrow2x-3=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)
Vậy GTLN D là \(\frac{4}{5}\)khi \(x=\frac{3}{2}.\)
\(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
a, \(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{4+6}}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
b,\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}\)
c, \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^6}{3^5.2^{11}}=\frac{3}{2^4}\)
d, \(\frac{6^3+3.6^2+3^3}{-13}=\frac{\left(2.3\right)^3+3\left(2.3\right)^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}\)
\(=\frac{2^3.3^3+3^3.2^2+3^3}{-13}=\frac{3^9\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=3^3=27\)