Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+5\right)^3=64\)
\(\Leftrightarrow\left(x+5\right)^3=4^3\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\)
Vậy x = - 1
b) \(x:\left(-\frac{3}{5}\right)^2=-\frac{3}{5}\)
\(\Leftrightarrow x=\left(-\frac{3}{5}\right)^2.\left(-\frac{3}{5}\right)\)
\(\Leftrightarrow x=\left(-\frac{3}{5}\right)^3\)
\(\Leftrightarrow x=-0,216\)
Vậy x = - 0, 216
c) \(\left(\frac{4}{7}\right)^4.x=\left(\frac{4}{7}\right)^6\)
\(\Leftrightarrow x=\left(\frac{4}{7}\right)^6:\left(\frac{4}{7}\right)^4\)
\(\Leftrightarrow x=\left(\frac{4}{7}\right)^2\)
\(\Leftrightarrow\text{x}=\frac{16}{49}\)
Vậy x = 16/49
d) \(\left(-\frac{1}{3}\right)^3x=\frac{1}{81}\)
\(\Leftrightarrow-\frac{1}{27}x=\frac{1}{81}\)
\(\Leftrightarrow x=\frac{1}{81}:\left(-\frac{1}{27}\right)\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy x = - 1/3
a) \(\dfrac{\left(-3\right)^7\cdot2^8}{6^7}\)
\(=\dfrac{-1\cdot3^7\cdot2^8}{\left(2\cdot3\right)^7}=\dfrac{-1\cdot3^7\cdot2^7\cdot2}{2^7\cdot3^7}=-1\cdot2=-2\)
b) \(\dfrac{-3\cdot7^4+7^3}{7^5\cdot6-7^3\cdot2}\)
\(=\dfrac{-3\cdot7\cdot7^3+7^3}{7^3\cdot7^2\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\left(-3\cdot7+1\right)}{7^3\left(7^2\cdot6-2\right)}=\dfrac{-3\cdot7+1}{7^2\cdot6-2}\)
\(=\dfrac{-21+1}{294-2}=\dfrac{-20}{290}=\dfrac{-2}{29}\)
b) \(\dfrac{5^3\cdot3^5}{5^3\cdot0,5+125\cdot2\cdot5}\)
\(=\dfrac{5^3\cdot3^5}{5^3\cdot0,5+5^3\cdot2\cdot5}=\dfrac{5^3\cdot3^5}{5^3\left(0,5+2\cdot5\right)}\)
\(=\dfrac{3^5}{0,5+2\cdot5}=\dfrac{243}{10,5}=\dfrac{162}{7}\)
a) Ta có: 2|x + 2| \(\ge\)0 \(\forall\)x
=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x
Hay A \(\ge\)15 \(\forall\)x
Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2
Vậy Min A = 15 tại x = -2
b) Ta có: 2(x + 5)4 \(\ge\)0 \(\forall\)x
3|x + y + 2| \(\ge\)0 \(\forall\)x;y
=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y
Hay B \(\le\)20 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)
Vậy Max B = 20 tại x = -5 và y = 3
Câu này mình chưa học đến mình mới lớp 5 thôi đây toán lớp 7 chưa có ai chả lời được
Answer:
Câu 1:
\(5x+7y=40\)
\(\Rightarrow\hept{\begin{cases}5x=40\\7y=40\end{cases}}\Rightarrow\hept{\begin{cases}x=40:5\\y=40:7\end{cases}}\Rightarrow\hept{\begin{cases}x=8\\y=\frac{40}{7}\end{cases}}\)
Câu 2:
\(P=\frac{2x-5}{x+2}\left(x\ne-2\right)\)
\(=\frac{2x+4-9}{x+2}\)
\(=\frac{2x+4}{x+2}-\frac{9}{x+2}\)
\(=\frac{2\left(x+2\right)}{x+2}-\frac{9}{x+2}\)
\(=2-\frac{9}{x+2}\)
Mà để cho \(P\inℤ\) thì \(\frac{9}{x+2}\inℤ\)
\(\Rightarrow9⋮\left(x+2\right)\)
\(\Rightarrow x+2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Có bảng sau:
x+2 | -9 | -3 | -1 | 1 | 3 | 9 |
x | -11 | -5 | -3 | 1 | 1 | 7 |
Vậy \(x\in\left\{-11;-5;-3;-1;1;7\right\}\) thì \(P\inℤ\)
Ta có:
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
Do: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Mặt khác: \(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Thay vào B ta có:
\(B=2\cdot1^5-5\cdot\left(-2\right)^3+4=2\cdot1-5\cdot-8+4=2+40+4=46\)