Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2020}{2021}\cdot\dfrac{2021}{2022}=\dfrac{1}{2022}\)
\(B=\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot\cdot\cdot\left(1-\dfrac{1}{2021}\right)\cdot\left(1-\dfrac{1}{2022}\right)\)
\(B=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\cdot\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\cdot\left(\dfrac{4}{4}-\dfrac{1}{4}\right)\cdot\cdot\cdot\left(\dfrac{2021}{2021}-\dfrac{1}{2021}\right)\cdot\left(\dfrac{2022}{2022}-\dfrac{1}{2022}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\cdot\cdot\dfrac{2020}{2021}\cdot\dfrac{2021}{2022}\)
\(B=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot2020\cdot2021}{2\cdot3\cdot4\cdot\cdot\cdot2021\cdot2022}\)
\(B=\dfrac{1}{2022}\)
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+2021-2022-2023
=0+0+...+0-1-2023
=-2024
a: =2+6*(-1)^2019+2026
=2028-6
=2022
b: \(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}...\cdot\dfrac{625}{624}\)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2}{\left(4-1\right)\left(4+1\right)}...\cdot\dfrac{625}{\left(25-1\right)\left(25+1\right)}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{1\cdot2\cdot3\cdot...\cdot48}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\)
\(=\dfrac{49}{1}\cdot\dfrac{2}{50}=\dfrac{98}{50}=\dfrac{49}{25}\)
3S=3-3^2+...-3^2022+3^2023
=>4S=3^2023+1
=>4S-3^2023=1
A=(1-2)+(3-4)+...+(2021-2022)+2023
=2023-(1+1+1+...+1)
=2023-1011
=1012
B/A
\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)
\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)
Sửa đề : \(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\)
\(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\\ =\left(\dfrac{2\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{7}{11}\right)}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\\ =\left(\dfrac{2}{7}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}\right)}\right):\dfrac{2021}{2020}\\ =\left(\dfrac{2}{7}-\dfrac{2}{7}\right):\dfrac{2021}{2022}=0\)
Ta có \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2021}\right)\left(1-\dfrac{1}{2022}\right)\)
\(B=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}.\dfrac{2021}{2022}\)
\(B=\dfrac{1}{2022}\)
giúp mik với ạ