Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mình không hiểu cho lắm x^2y^2 là thế nào nhỉ :v
b) x^3 - 3x^2 + 3x - 1 = (x - 1)^3 = (101-1)^3 = 100^3 = 10000
c) x^3 + 9x^2 + 27x + 27 = (x +3)^3 = (97+3)^3 = 100^3 = 10000
\(...=A=x^3-3x^2+3x-1+1013\)
\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)
\(...B=x^3-6x^2+12x-8-100\)
\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)
\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)
\(...D=x^3+9x^2+27x+9+2018\)
\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)
a) \(A=x^3-3x^2+3x+1012\)
\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)
\(A=\left(x-1\right)^3+1013\)
Thay x=11 vào A ta có:
\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)
b) \(B=x^3-6x^2+12x-108\)
\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)
\(B=\left(x-2\right)^3-100\)
Thay x=12 vào B ta có:
\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)
c) \(C=x^3+6x^2y+12xy^2+8y^3\)
\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)
\(C=\left(x+2y\right)^3\)
Thay x=-2y vào C ta được:
\(C=\left(-2y+2y\right)^3=0^3=0\)
d) \(D=x^3+9x^2+27x+2027\)
\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)
\(D=\left(x+3\right)^3+2000\)
Thay x=-23 vào D ta có:
\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)
a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2\)(1)
Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:
\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)
b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left(x+y-7-y+6\right)^2\)
\(=\left(x-1\right)^2=100^2=10000\)
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
a, Đặt \(A=x^2-y^2\)
Thay x = 87, y = 13 có:
\(A=87^2-13^2=\left(87+13\right)\left(87-13\right)\)
\(=100.74=7400\)
Vậy A= 7400 khi x = 87, y = 13
b, Đặt \(B=x^3-3x^2=x^3-3x^2+3x-1-3x+1\)
\(=\left(x-1\right)^3-\left(3x-1\right)\)
Thay x = 101 có:
\(B=100^3-302=999698\)
Vậy \(B=999698\) khi x = 101
c, Đặt \(C=x^3+9x^2+27x+27=\left(x+3\right)^3\)
Thay x = 97 \(\Rightarrow C=100^3=1000000\)
Vậy C = 1000000 khi x = 97
a, \(x^2-y^2=\left(x+y\right)\left(x-y\right)\)
Tại x = 87 ; y= 13
Ta có:
\(\left(87+13\right)\left(87-13\right)=100.74=7400\)
\(b,x^3-3x^2+3x-1-3x+1=\left(x-1\right)^3-\left(3x-1\right)\)Tại x = 101
Ta có :
\(\left(101-1\right)^3-\left(3x-1\right)=1000000-303+1=999698\)\(c,x^3+9x^2+27x+27=\left(x+3\right)^3\)
Tại x = 97
Ta có:
\(\left(97+3\right)^3=1000000\)
\(A=x^3-3x^2+3x-1\\ A=x^3-3x^2.1+3x.1^2-1^3\\ A=\left(x-1\right)^3\)
Thay x=101 vào biểu thức trên ta được kết quả là 100^3= 1000000
\(a,x^2-y^2=\left(x+y\right)\left(x-y\right)=\left(87+13\right)\left(87-13\right)=100.74=7400\)\(b,x^3-3x^2+3x-1=\left(x-1\right)^3=\left(101-1\right)^3=100^3=1000000\)c,\(x^3+9x^2+27x+27=\left(x+3\right)^3=\left(97+3\right)^3=1000000\)
a) x2 - y2 = (x+y)(x-y)
Thay x=87; y=13 có:
(87+13)(87-13) = 100.74 = 7400
b)x3-3x2+3x-1 = x3 - 3x2.1+ 3x .12 -13 = (x-1)3
Thay x=101 có:
(101-1)3 =1003 =1000000
c)x3+9x2+27x+27= x3 +3x2.1+3x.12+33= (x+3)3
Thay x=97 có:
(97+3)3= 1003=1000000
a) x2-y2
= (x-y)x(x+y)
=(87+13)x(87-13)
=100x74
=7400
b) x3-3x2+3x-1
=x3-3x21+3x12-13=(x-1)3
=(101-1)3
=1003
=1000000
c) x3+9x2+27x+27
=x3+3x23+3x32+33
=(x+3)3
=(97+3)3
=1003
=1000000
Bài cũn dễ mà