Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(A=2\left(1-\frac{1}{20}\right)\)
\(A=2.\frac{19}{20}=\frac{19}{10}\)
Vậy ...
=2.(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+......+\(\frac{1}{19.20}\))
=2.( 1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+..........+\(\frac{1}{19}\)-\(\frac{1}{20}\))
=2.(1-\(\frac{1}{20}\))
=2.\(\frac{19}{20}\)
= \(\frac{19}{10}\)
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A= 3.(1.2 + 2.3 + 3.4 + ..... +99.100)
3A=1.2.(3-0) + 2.3.(4-1) +.....+99.100.(101-98)
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
\(A=4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)
\(=4\cdot\dfrac{2014}{2015}=\dfrac{8056}{2015}\)
\(\dfrac{4}{1.2}+\dfrac{4}{2.3}+...+\dfrac{4}{2021.2022}\\ =4\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2021.2022}\right)\\ =4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\right)\\ =4\left(1-\dfrac{1}{2022}\right)\\ =4.\dfrac{2021}{2022}\\ =\dfrac{4042}{1011}\)
4/1.2 4/2.3 4/3.4 ... 4/2021.4/2022
= 1/4. (1/1- 1/2+ 1/2- 1/3+ 1/3- 1/4+...+1/2021- 1/2022)
=1/4. (1/1- 1/2022)= 1/4. (2022/2022- 1/2022)
= 1/4. 2021/2022
= 2021/8088
\(A=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=9\left(1-\dfrac{1}{100}\right)=\dfrac{891}{100}\)
\(=4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)=4\cdot\dfrac{2014}{2015}=\dfrac{8056}{2015}\)
\(\dfrac{4}{1.2}+\dfrac{4}{2.3}+...+\dfrac{4}{2014.2015}\\ =4\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}\right)\\ =4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\\ =4\left(1-\dfrac{1}{2015}\right)\\ =4.\dfrac{2014}{2015}\\ =\dfrac{8056}{2015}\)
a) Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32
A = 1/2 + 1/22 + 1/23 + 1/24 + 1/25
2A = 2(1/2 + 22 + 1/23 + 1/24 + 1/25)
2A = 1 + 1/2 + 1/22 + 1/23 + 1/24
2A - A = (1 + 1/2 + 1/22 + 1/23 + 1/24) - (1/2 + 1/22 + 1/23 + 1/24 + 1/25)
A = 1 - 1/25
A = 31/32
b) 2/1.2 + 2/2.3 + 2/3.4 + ... + 2/18 . 19 + 2/19.20
= 2(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/18.19 + 1/19.20)
= 2.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/18 - 1/19 + 1/19 - 1/20)
= 2. (1 - 1/20)
= 2.19/20
= 19/10
Đặt A = 1.2 + 2.3 + ........... + 19.20
\(\Rightarrow\) 3A = 1.2.3 + 2.3.3 +........... + 19.20.3
= 1.2 .( 3-0) + 2.3. ( 4-1)+..........+ 19.20.( 21-18)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +........+ 19.20.21 - 18.19.20
= 19.20.21 = 7980
\(\Rightarrow\) A = 7980 : 3 = 2660
Vậy A = 2660
Gọi A=1.2+2.3+3.4+4.5+...+18.19+19.20
Nhân cả 2 vế với 3,ta có :
A3= (1.2+2.3+...+18.19+19.20).3
A3 = 1.2.3+2.3.3+...+18.19.3+19.20.3
A3 = 1.2.3+2.3.(4-1)+......+18.19.(20-17)+19.20.(21-18)
A3 = 1.2.3+2.3.4 - 1.2.3+...+18.19.20-17.18.19+19.20.21-18.19.20
A3 = 19.20.21
A3 = 19.20.7.3
A = 19.20.7
A = 2660
Vậy 1.2+2.3+...+18.19+19.20=2660
=> 3A = 1.2. (3-0) +2.3.(4-1) + ...+18.19.(20-17)
=1.2.3-0.1.2+2.3.4-1.2.3+...+18.19.20-17.18.19
=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...+(17.18.19-17.18.19)+18.19.20-0.1.2
=0+0+0+...+0+18.19.20
=18.19.20
=> A = 6.19.20= 114* 20= 2280
`A= 1.2 + 2.3 +3.4 +...+ 18.19`
`3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +....+ 18.19.(20-17)`
`3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ....+ 18.19.20 - 17.18.19 `
`3A = 18.19.20`
`A = 6.19.20`
`A = 2280`