Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(B=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)\)
\(B=\frac{510}{103}\)
\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\frac{102}{103}\)
\(B=\frac{34}{103}\)
Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)
\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\frac{102}{103}\)
\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)
=\(\frac{5}{3}\cdot\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{100\cdot103}\right)\)
=\(\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
=\(\frac{5}{3}\cdot\left(1-\frac{1}{103}\right)\)
=\(\frac{5}{3}\cdot\frac{102}{103}\)=\(\frac{170}{103}\)
Vậy D=\(\frac{170}{103}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(3B=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{100.103}\right)\)
\(3B=5\left(1-\frac{1}{103}\right)\)
\(3B=5.\frac{102}{103}\)
\(3B=\frac{510}{103}\)
\(\Rightarrow B=\frac{170}{103}\)
Ta có:
B=\(\frac{5}{1.4}\)+\(\frac{5}{4.7}+.....+\frac{5}{100.103}\)
B=\(\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{100.103}\right)\)
B=\(\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\right)\)
B=\(\frac{5}{3}\left(1-\frac{1}{103}\right)\)
B=\(\frac{5}{3}.\frac{102}{103}\)
B=\(\frac{170}{103}\)
Vậy B=\(\frac{170}{103}\)
nhớ k
=> ( \(\frac{-5}{2.3}+\frac{-5}{3.4}+\frac{-5}{4.5}+.....+\frac{-5}{9.10}\)):(\(\frac{1}{4}+\frac{7}{6}-\frac{7}{3}\)):\(\frac{24}{33}\)
=>\(\frac{-5}{1}.\)(\(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)):(\(\frac{3}{12}+\frac{14}{12}-\frac{28}{12}\)):\(\frac{24}{33}\)
=>-5.(\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)):(\(\frac{-11}{12}\)):\(\frac{24}{33}\)
=>-5.(\(\frac{1}{2}-\frac{1}{10}\)):\(\frac{-11}{10}\):\(\frac{24}{33}\)
=>-5.\(\frac{2}{5}\):\(\frac{-11}{10}:\frac{24}{33}\)
=>2:\(\frac{-11}{10}:\frac{24}{33}\)
=>\(\frac{-5}{2}\)
a) (\(6\frac{2}{7}.x+\frac{3}{7}\))=-1.\(\frac{11}{5}+\frac{3}{7}\)
(\(6\frac{2}{7}.x+\frac{3}{7}\))=\(\frac{-62}{35}\)
\(\frac{44}{7}.x\)=\(\frac{-62}{35}-\frac{3}{7}\)
\(\frac{44}{7}.x=\frac{-77}{35}\)
x=\(\frac{-77}{35}:\frac{44}{7}\)=\(\frac{539}{1540}\)
\(1)A=a\frac{1}{3}+a\frac{1}{4}-a\frac{1}{6}=a\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)=a\frac{5}{12}\)
Thay \(a=-\frac{3}{5}\) vào A,ta đc:
\(A=-\frac{3}{5}.\frac{5}{12}=-\frac{1}{4}\)
\(2)B=b\frac{5}{6}+b\frac{3}{4}-b\frac{1}{2}=b\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)=b\frac{13}{12}\)
Thay \(b=\frac{12}{13}\) vào B, ta đc: \(B=b\frac{13}{12}=\frac{12}{13}.\frac{13}{12}=1\)
Võ Thiện Tuấn viết tổng quát kết quả hay phép đề bài hả bạn ?
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7} +....+\frac{1}{100}-\frac{1}{103}\)
\(=1-\frac{1}{103}\)
\(=\frac{102}{103}\)
\(\left(2\right)K=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(K=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)
\(K=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(K=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\left(3\right)L=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{100\cdot103}\)
\(L=\frac{5}{3}\cdot\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(L=\frac{5}{3}\cdot\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}\cdot\frac{102}{103}=\frac{510}{309}=\frac{170}{103}\)
Trả lời:
2,\(K=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(K=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(K=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(K=\frac{1}{2}-\frac{1}{100}\)
\(K=\frac{49}{100}\)
3,\(L=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(L=\frac{5}{3}\times\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(L=\frac{5}{3}\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(L=\frac{5}{3}\times\left(\frac{1}{1}-\frac{1}{103}\right)\)
\(L=\frac{5}{3}\times\frac{102}{103}\)
\(L=\frac{170}{103}\)
Học tốt