Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x =7
=>x+1=8
\(\Rightarrow\)\(A=x^{15}-8x^{14}+8x^{13}-8x^{12}+.......8x^2+8x-5\)
\(\Rightarrow x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...\left(x+1\right)x^2\)
\(+\left(x+1\right)x^5\)
\(\Rightarrow x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x-5\)
\(\Rightarrow x-5\Leftrightarrow A=7-5=2\Rightarrow A=2\)
Vậy A=2 khi x=7
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)
\(A=\dfrac{2x^2\left(3x-4y+2\right)}{x\left(3x+y\right)\left(3x-y\right)}=\dfrac{2x\left(3x-4y+2\right)}{\left(3x+y\right)\left(3x-y\right)}\\ A=\dfrac{2\left(3-8+2\right)}{\left(3+2\right)\left(3-2\right)}=\dfrac{2\left(-3\right)}{5}=\dfrac{-6}{5}\)
a) \(A=\left(x-1\right).\left(x+1\right)+\left(x+2\right).\left(x^2+2x+4\right)-x.\left(x^2+x+2\right)\)
\(=x^2-1+x^3+2x^2+4x+2x^2+4x+8-x^3-x^2-2x\)
\(=\left(x^3-x^3\right)+\left(x^2+2x^2+2x^2-x^2\right)+\left(4x+4x-2x\right)+\left(-1+8\right)\)
\(=4x^2+6x+7\)
b) Thay vào ta được
\(A=4.\left(\frac{1}{2}\right)^2+6.\frac{1}{2}+7=1+3+7=11\)
Bài 1:
\(D=-3x^2+x+15x-5-3\left(2x^2-5x+2\right)\)
\(=-3x^2+16x-5-6x^2+15x-6\)
\(=-9x^2+31x-11\)
\(=-9\cdot\dfrac{1}{9}+\dfrac{31}{3}-11\)
=-11-1+31/3=-12+31/3=-5/3
b: \(E=x^2+x-56-x^2+7x-10=8x-66\)
\(=-\dfrac{8}{5}-66=-\dfrac{338}{5}\)
c: \(F=-3\left(2x^2+x-16x-8\right)-\left(-3x^2+2x-15x+10\right)-4x^2+24x\)
\(=-6x^2+45x+24+3x^2+13x-10-4x^2+24x\)
\(=-4x^2+82x+14\)
\(=-4\cdot9-82\cdot3+14=-268\)
\(ab\left(x-y\right)^3-8ab=ab\left[\left(x-y\right)^3-2^3\right]=ab\left(x-y-2\right)\left[\left(x-y\right)^2+2\left(x-y\right)+4\right]\)
\(36x^2-y^2+6y-9=36x^2-\left(y-3\right)^2=\left(6x-y+3\right)\left(6x+y-3\right)\)
\(8x^2+10x-3=0\)
\(8x^2-2x+12x-3=0\)
\(2x\left(4x-1\right)+3\left(4x-1\right)=0\)
\(\left(4x-1\right)\left(2x+3\right)=0\)
\(\left[\begin{array}{nghiempt}4x-1=0\\2x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}4x=1\\2x=-3\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{4}\\x=-\frac{3}{2}\end{array}\right.\)
\(\left(2x-5\right)^2-\left(x+4\right)^2=0\)
\(\left(2x-5+x+4\right)\left(2x-5-x-4\right)=0\)
\(\left(3x-1\right)\left(x-9\right)=0\)
\(\left[\begin{array}{nghiempt}3x-1=0\\x-9=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=9\end{array}\right.\)
\(=\dfrac{1}{8}\cdot24^3-\dfrac{3}{2}\cdot24^2-2\cdot24=816\)