Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: \(=\dfrac{1}{3}\left(-\dfrac{4}{5}-\dfrac{6}{5}\right)=-\dfrac{1}{3}\cdot2=-\dfrac{2}{3}\)
1:
\(A=7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)
\(=-4-\dfrac{1}{4}=-\dfrac{17}{4}\)
Bài 1:
\(A=\left(7-\dfrac{3}{4}+\dfrac{1}{3}\right)-\left(6+\dfrac{5}{4}-\dfrac{4}{3}\right)-\left(5-\dfrac{7}{4}+\dfrac{5}{3}\right)\)
\(A=7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)
\(A=\left(7-6-5\right)-\left(\dfrac{3}{4}+\dfrac{5}{4}-\dfrac{7}{4}\right)+\left(\dfrac{1}{3}+\dfrac{4}{3}-\dfrac{5}{3}\right)\)
\(A=-4-\dfrac{3+5-7}{4}+\dfrac{1+4-5}{3}\)
\(A=-4-\dfrac{1}{4}+\dfrac{0}{3}\)
\(A=-\dfrac{16}{4}-\dfrac{1}{4}+0\)
\(A=\dfrac{-16-1}{4}\)
\(A=-\dfrac{17}{4}\)
Bài 2:
\(\dfrac{1}{3}\cdot-\dfrac{4}{5}+\dfrac{1}{3}\cdot-\dfrac{6}{5}\)
\(=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{6}{5}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{-4-6}{5}\)
\(=\dfrac{1}{3}\cdot\dfrac{-10}{5}\)
\(=\dfrac{1}{3}\cdot-2\)
\(=-\dfrac{2}{3}\)
https://khoahoc.vietjack.com/question/661489/bieu-thuc-a-3-45-9-6-7-4-3-12-5-11-3-co-gia-tri-3-11
\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)
Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)
(101-5):4+1=25(số hạng)
=>A=25.(3+32+33+34)=25.120=3000
Bài 3 :
Vì \(\left(x-2\right)^2\ge0\forall x\)
Nên : \(A=\left(x-2\right)^2-4\ge-4\forall x\)
Vậy \(A_{min}=-4\) khi x = 2
B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)
B2:
a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)
\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)
B3:
Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x = 2
Vậy GTNN của A = -4 khi x = 2
\(A=\left(3-\dfrac{1}{4}+\dfrac{3}{2}\right)-\left(5+\dfrac{1}{3}-\dfrac{5}{6}\right)-\left(6-\dfrac{7}{4}+\dfrac{2}{3}\right)\\ \Rightarrow A=3-\dfrac{1}{4}+\dfrac{3}{2}-5-\dfrac{1}{3}+\dfrac{5}{6}-6+\dfrac{7}{4}-\dfrac{2}{3}\\ \Rightarrow A=\left(3-5-6\right)-\left(\dfrac{1}{4}+\dfrac{7}{4}\right)+\left(\dfrac{3}{2}+\dfrac{5}{6}-\dfrac{2}{3}\right)\\ \Rightarrow A=-8-\dfrac{3}{2}+\dfrac{5}{3}\\ =-\dfrac{47}{6}.\\ B=0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{41}\)
\(\Rightarrow B=\left(0,5+0,4\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{3}{5}+\dfrac{1}{41}\\ \Rightarrow B=2+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{83}{41}.\)
Số số hạng của dãy: (2012-2):1+1=2011(số)
Vì 2011 là số lẻ nên A là số âm.
Ta đăt:A = \(\frac{1}{3}+\left(\frac{1}{3}^2\right)+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^7\)
\(\Rightarrow3A=1+\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^8\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^8\right)-\left(\frac{1}{3}+\left(\frac{1}{3}^2\right)+....+\left(\frac{1}{3}\right)^7\right)\)
\(\Rightarrow2A=1-\left(\frac{1}{3}\right)^7\)
\(\Rightarrow A=\frac{1-\left(\frac{1}{3}\right)^7}{2}\)