Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=x4-2223x3+2223x2-2223x+2223
=x3(x-2223)+x(x-2223)+2222x2+2003(*)
thay x=2222,ta co:
(*)<=>-22223-2222+22223+2223=1
dung thi chon nha
A = 2015 - 2015x + 2015x2 - 2015x3 + 2015x4 - 2015x5 +.....+ 2015x2015
A = 2015.(1-x+x2-x3+x4-x5+...+x2015)
Thay x = 2014 và đặt
B = 1-2014+20142-20143+20144-20145+...+20142015
2014B = 2014-20142+20143-20144+20155-20146+...+20142016
2015B = 2014B + B = 1 + 20142016
=> B = \(\frac{1+2014^{2016}}{2015}\)
=> A = 2015.\(\frac{1+2014^{2016}}{2015}\)
=> A = 1+ 20142016
Điều kiện xác định của phân thức: x ≠ 0, x ≠ 2
Ta có
Với x = - thỏa mãn điều kiện xác định của phân thức ⇒ B =
b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)
\(x^4-2015x^3+2015x^2-2015x+2015\)
\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)(vì x=2014 nên 2015=x+1)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(=1\)