Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay m=3, n=-3, ta được:
-10 * 3 + 5 * (-3) - 3 * (-3)
= -30 - 15 + 9
= -36
ta có M=\(\frac{20-7n}{5-2n}=>2M=\frac{40-14n}{5-2n}\left(=\right)2M=\frac{5+7.\left(5-2n\right)}{5-2n}\left(=\right)\frac{5}{5-2n}+7=>M=\frac{5}{10-4n}+\frac{7}{2}\)
Để M nhỏ nhất thì \(\frac{5}{10-4n}+\frac{7}{2}\)nhỏ nhất
để \(\frac{5}{10-4n}+\frac{7}{2}\)nhỏ nhất thì \(\frac{5}{10-4n}\)nhỏ nhất
xét 2 TH
TH1:10-4n>0=>\(\frac{5}{10-4n}\)>0
TH2 10-4<0=>\(\frac{5}{10-4n}< 0\)
để \(\frac{5}{10-4n}\)nhỏ nhất thì \(\frac{5}{10-4n}< 0\)mà n nguyên =>10-4n=-2(=)4n=12(=)n=3
=> M=\(\frac{5}{10-12}+\frac{7}{2}=\frac{-5}{2}+\frac{7}{2}=1\)
Vậy min(m)=1 khi n=3
a, \(M=\left(x-2\right)^2-22\)
Có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-22\ge-22\forall x\)
hay GTNN của M là -22
Dấu "=" xảy ra tại \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTNN của M là -22 tại x=2.
b, \(N=9-|x+3|\)
Có: \(|x+3|\ge0\forall x\)
\(\Rightarrow9-|x+3|\le9\forall x\)
hay GTLN của N là 9
Dấu "=" xảy ra tại \(|x+3|=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy GTLN của N là 9 tại x = -3.
a)\(B=2022.2022\)
\(=\left(2021+1\right)2022\)
\(=2021.2022+2022\)
Vì \(2020< 2022\Rightarrow2021.2020< 2021.2022\Rightarrow2021.2020< 2021.2022+2022\)
hay \(A< B\)
b)\(M=360.345-200\)
\(=360\left(344+1\right)-200\)
\(=360.344+360-200\)
\(=360.344+160< 340.344+161=N\)
\(\Rightarrow M< N\)
\(A=\frac{7n+3}{2n+3}=\frac{2n+3}{2n+3}+\frac{5n}{2n+3}=1+\frac{5n}{2n+3}\).
A mang GTNN(giá trị nhỏ nhất) khi 5n có GTNN và 2n+3 có GTLN(giá trị lớn nhất)
\(\Leftrightarrow\) 5n=0 \(\Rightarrow\frac{5n}{2n+3}=0\). Vậy GTNN của biểu thức \(A=1+0=1\), khi đó x=0
ƯCLN(42,78)=6. BCNN(42,78)=546 m=6,n=546. Mà 6.546=3276. Suy ra S=3276-42.78. S=3276-3276. S=0
2m + 7n + mn
= 2 . ( - 7 ) + 7 . ( - 5 ) + - 7 . ( - 5 )
= - 14 + ( - 35 ) + 35
= - 14
-14 đúng 100%