Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x=100\)\(\Rightarrow x-1=99\)
Ta có: \(C=99+99x+99x^2+99x^3+.......+99x^n+99x^{n+1}\)
\(=x-1+\left(x-1\right).x+\left(x-1\right).x^2+........+\left(x-1\right).x^n+\left(x-1\right).x^{n+1}\)
\(=x-1+x^2-x+x^3-x^2+......+x^{n+1}-x^n+x^{n+2}-x^{n+1}\)
\(=-1+x^{n+2}=x^{n+2}-1\)
Thay \(x=100\)vào biểu thức ta được:
\(C=100^{n+2}-1\)
Khi x=1 thì
B(1)=1+2+...+100=5050
Khi x=-1 thì
B(-1)=-1+2-3+4-5+6-...-99+100
=1+1+...+1
=50
Lời giải:
$f(x)=99x+98x^2+97x^3+....+2x^{98}+x^{99}+1$
$f(-1)=-99+98-97+96-....+2-1+1$
$=-1+2-3+4+....-97+98-99+1$
$=(-1+2)+(-3+4)+...+(-97+98)-99+1$
$=1+1+...+1-99+1$
$=49-99+1=-49$
Bài làm:
Ta có: \(x=100\Rightarrow99=x-1\)
Thay vào ta được:
\(P=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-...-\left(x-1\right)x-1\)
\(P=x^{10}-x^{10}+x^9-x^9+x^8-...-x^2+x-1\)
\(P=x-1=100-1=99\)
Vậy tại x = 100 thì P = 99
Ta thấy 1 mũ bao nhiêu vẫn là 1
=> A.1 = 1 + 1 + 1 +.....+ 1
Có ( 99 -1 ) : 2 + 1 = 50 chữ số 1 ở biểu thức A.
=> A = 50
Ai thấy đúng thì ủng hộ nha !!! Ai thấy sai thì góp ý cho mink nha .
a: \(A=0x^2y^4z+\dfrac{7}{2}x^2y^4z-\dfrac{2}{5}x^2y^4z=\dfrac{31}{10}x^2y^4z=\dfrac{31}{10}\cdot2^2\cdot\dfrac{1}{16}\cdot\left(-1\right)=-\dfrac{31}{40}\)
a: \(=\dfrac{7}{5}x^4z^3y=\dfrac{7}{5}\cdot2^4\cdot\left(-1\right)^3\cdot\dfrac{1}{2}=-\dfrac{56}{5}\)
b: \(=-xy^3\)
vì x=99
=> 98= x-1
thay vào biểu thức t được
x^3- (x-1)x^2 -x.x +1 = x^3 -x^3+x^2 -x^2 +1 = 0+1=1
Thay x = 99 vào biểu thức trên ta được :
\(99^3-98.99^2-99.99+1=970299-960498-9801+1=1\)
Vậy giá trị của biểu thức trên là : 1