K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

x=\(\sqrt{\frac{2-\sqrt{3}}{2}}\) =\(\sqrt{\frac{4-2\sqrt{3}}{4}}=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow2x=\sqrt{3}-1\Rightarrow2x+1=\sqrt{3}\Rightarrow\left(2x+1\right)^2=3\Leftrightarrow4x^2+4x+1=3\Leftrightarrow4x^2+4x-2=0\Leftrightarrow2x^2+2x-1=0\)

nên đề bài = \(\left(x^3\left(2x^2+2x-1\right)+1\right)^{2013}+\frac{\left(x\left(2x^2+2x-1\right)-3\right)^{2013}}{x^2\left(2x^2+2x-1\right)-3^{2013}}\)

 =\(\left(0+1\right)^{2013}+\frac{\left(0-3\right)^{2013}}{0-3^{2013}}=1+1=2\)

5 tháng 1 2022

\(a,B=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\\ B=x-\sqrt{x}+1-\sqrt{x}=\left(\sqrt{x}-1\right)^2\)

Mà \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow B=\left(\sqrt{3}-1-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)

\(b,P=AB=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\\ P=\dfrac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}=\sqrt{x}-1\\ c,Q=\sqrt{x}+\dfrac{1}{P}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}\\ Q=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+1\ge2\sqrt{1}+1=3\\ Q_{min}=3\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=1\\1-\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\sqrt{x}=2\left(x>1\Leftrightarrow\right)x=4\left(tm\right)\)

a: \(B=\left(\sqrt{x}-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)

b: \(A=\dfrac{2x+1-x+\sqrt{x}}{x\sqrt{x}-1}\cdot\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

1 tháng 1 2017

Khi x= 9 ta có  A = 9 + 2 9 − 5 = 3 + 2 3 − 5 = − 5 2

AH
Akai Haruma
Giáo viên
5 tháng 9 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

5 tháng 9 2023

vâng ạ

NV
18 tháng 10 2019

1/ \(x-1=\sqrt[3]{2}\Rightarrow\left(x-1\right)^3=2\Rightarrow x^3-3x^2+3x-3=0\)

\(B=x^2\left(x^3-3x^2+3x-3\right)+x\left(x^3-3x^3+3x-3\right)+x^3-3x^2+3x-3+1945\)

\(B=1945\)

b/ Tương tự:

\(x-1=\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x^3-3x^2+3x-1=6+3\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)

\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

\(P=x^2\left(x^3-3x^2-3x-1\right)-x\left(x^3-3x^2-3x-1\right)+x^3-3x^2-3x-1+2016\)

\(P=2016\)