K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

4 3.5 + 4 5.7 + 4 7.9 + 4 9.11 = 4 2 5 − 3 3.5 + 7 − 5 5.7 + 9 − 7 7.9 + 11 − 9 9.11 = 2. 1 3 − 1 5 + 1 5 − 1 7 + 1 7 − 1 9 + 1 9 − 1 11 = 2. 1 3 − 1 11 = 2. 8 33 = 16 33

7 tháng 5 2015

\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{2013.2015}=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=2.\left(\frac{2015}{2015}-\frac{1}{2015}\right)\)

\(=2.\frac{2014}{2015}\)

\(=\frac{4028}{2015}\)

18 tháng 4 2016

đặt A=6/5.7+6/7.9+6/9.11+......+6/33.35

\(\Leftrightarrow A=3\left(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{33\cdot35}\right)\)

\(\Rightarrow A=3\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{33}-\frac{1}{35}\right)\)

\(\Rightarrow A=3\left(\frac{1}{5}-\frac{1}{35}\right)\)

\(\Rightarrow A=3\cdot\frac{6}{35}\)

\(\Rightarrow A=\frac{18}{35}\)

18 tháng 4 2016

Gọi A là biểu thức \(\frac{6}{5\cdot7}+\frac{6}{7\cdot9}+...+\frac{6}{33\cdot35}\)

Ta có: \(\frac{6}{5\cdot7}+\frac{6}{7\cdot9}+...+\frac{6}{33\cdot35}\)

\(\Rightarrow A=3\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{33}-\frac{1}{35}\right)\)

\(\Rightarrow A=3\left(\frac{1}{5}-\frac{1}{35}\right)=3\cdot\frac{6}{35}=\frac{18}{35}\)

6 tháng 3 2017

4/3.5+4/5.7+4/7.9+4/9.11

=4.(1/3.5+1/5.7+1/7.9+1/9.11)

=4.1/2.(2/3.5+2/5.7+2/7.9+2/9.11)

=2.(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11)

=2.(1/3-1/11)

=2.8/33

=16/33

6 tháng 3 2017

  4/3.5+4/5.7+4/7.9+4/9.11

=4.2/2.3.5+4.2/2.5.7+4.2/2.7.9+4.2/2.9.11

=4/2.2/3.5+4/2.2/5.7+4/2.2/7.9+4/2.2/9.11

=4/2.(2/3.5+2/5.7+2/7.9+2/9.11)

=4/2.(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11)

=2.(1/3-1/11)

=2.8/33

=16/33

29 tháng 2 2020

Bạn tham khảo nhé!

Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101

A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)

A = (12 + 32 + 52 + … + 972 + 992) + 2.(1 + 3 + 5 + … + 97 + 99).

Đặt B = 12 + 32 + 52 + … + 992

=> B = (12 + 22 + 32 + 42 + … + 1002) – 22.(12 + 22 + 32 + 42 + … + 502)

Tính dãy tổng quát C = 12 + 22 + 32 + … + n2

C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]

C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)

C =  = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6

Áp dụng vào B ta được:

B = 100.101.201 : 6 – 4.50.51.101 : 6  = 166650

=> A = 166650 + 2.(1 + 99).50 : 2

=> A = 166650 + 5000 = 172650.

Đ/s: A = 172650.

26 tháng 4 2015

\(p=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2009.2011}\)
\(p=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2009}-\frac{1}{2011}\)
\(p=\frac{1}{3}-\frac{1}{2011}\)
\(p=\frac{2011}{6033}-\frac{3}{6033}\)
\(p=\frac{2008}{6033}\)

18 tháng 5 2018

\(\frac{x}{3.5}+\frac{x}{5.7}+\frac{x}{7.9}+...+\frac{x}{13.15}=\frac{4}{45}\)

\(\Leftrightarrow\frac{x}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{13.15}\right)=\frac{4}{45}\)

\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{4}{45}\)

\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{4}{45}\)

\(\Leftrightarrow\frac{x}{2}.\frac{4}{15}=\frac{4}{45}\)

\(\Leftrightarrow\frac{x}{2}=\frac{4}{45}:\frac{4}{15}\)

\(\Leftrightarrow\frac{x}{2}=\frac{1}{3}\)

\(\Leftrightarrow x=\frac{1}{3}.2\)

\(\Leftrightarrow x=\frac{2}{3}\)

Vậy x = \(\frac{2}{3}\)

_Chúc bạn học tốt_

1 tháng 5 2015

\(=4\left(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{53.55}\right)\)

\(=4\left(\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{53}-\frac{1}{55}\right)\)

\(=4\left(\frac{1}{5}-\frac{1}{55}\right)\)

\(=4.\frac{2}{11}\)

\(=\frac{8}{11}\)

30 tháng 3 2023

  A= \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+\(\dfrac{1}{7.9}\)+...+\(\dfrac{1}{97.99}\)

2A= 1 - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\) - \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\) - \(\dfrac{1}{9}\)+...+\(\dfrac{1}{97}\)-\(\dfrac{1}{99}\)

2A= 1-\(\dfrac{1}{99}\)

2A= \(\dfrac{98}{99}\)

  A= \(\dfrac{98}{99}\) : 2

A=\(\dfrac{49}{99}\)