Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Tìm min
\(SV=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)
\(SV=\left|x-2016\right|+\left|2018-x\right|+\left|x-2017\right|\)
\(SV\ge\left|x-2016+2018-x\right|+\left|x-2017\right|=2+\left|x-2017\right|\ge2\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}2016\le x\le2018\\x=2017\end{matrix}\right.\Leftrightarrow x=2017\)
3) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=676\)
\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=676\)
\(\Rightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=673\)
Lời giải:
Ta có \(\frac{2016c-2017b}{2015}=\frac{2017a-2015c}{2016}=\frac{2015b-2016a}{2017}\)
\(\Rightarrow \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\( \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)
\(=\frac{2015.2016c-2015.2017b+2016.2017a-2016.2015c+2017.2015b-2017.2016a}{2015^2+2016^2+2017^2}=0\)
\(\Rightarrow \left\{\begin{matrix} 2015.2016c-2015.2017b=0\\ 2016.2017a-2016.2015c=0\\ 2017.2015b-2016.2016a=0\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 2016c=2017b\\ 2017a=2015c\\ 2015b=2016a\end{matrix}\right.\Rightarrow \frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)
Ta có đpcm.
Câu 1:
\(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\)
\(\Rightarrow (a^{2016}+b^{2016})(c^{2016}-d^{2016})=(a^{2016}-b^{2016})(c^{2016}+d^{2016})\)
\(\Leftrightarrow 2(bc)^{2016}=2(ad)^{2016}\Rightarrow (bc)^{2016}=(ad)^{2016}\)
\(\Rightarrow (\frac{a}{b})^{2016}=(\frac{c}{d})^{2016}\)
\(\Rightarrow \frac{a}{b}=\pm \frac{c}{d}\) (đpcm)
Câu 2:
Nếu $a+b+c+d=0$ thì: \(\left\{\begin{matrix} a+b=-(c+d)\\ b+c=-(d+a)\\ c+d=-(a+b)\\ d+a=-(b+c)\end{matrix}\right.\)
\(\Rightarrow M=(-1)+(-1)+(-1)+(-1)=-4\)
Nếu $a+b+c+d\neq 0$
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5(a+b+c+d)}{a+b+c+d}=5\)
\(\Rightarrow \left\{\begin{matrix} 2a+b+c+d=5a\\ a+2b+c+d=5b\\ a+b+2c+d=5c\\ a+b+c+2d=5d\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b+c+d=3a(1)\\ a+c+d=3b(2)\\ a+b+d=3c(3)\\ a+b+c=3d(4)\end{matrix}\right.\)
Từ \((1);(2)\Rightarrow b+a+2(c+d)=3(a+b)\Rightarrow c+d=a+b\)
\(\Rightarrow \frac{a+b}{c+d}=1\)
Tương tự: \(\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
\(\Rightarrow M=1+1+1+1=4\)
a) Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\\\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\end{matrix}\right.\Rightarrowđpcm\)
b) \(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Rightarrow\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)=\left(\dfrac{x-3}{2015}-1\right)+\left(\dfrac{x-4}{2014}-1\right)\)\(\Rightarrow\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}=\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}\)
\(\Rightarrow\left(x-2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
vì \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\) nên \(x-2018=0\Leftrightarrow x=2018\)
Theo đề bài, ta có:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
\(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)
\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\) vì a,b,c,d khác 0
\(\Rightarrow a=b=c=d\)
\(\Rightarrow M=1+1+1+1=4\)
Đặt a/2016=b/2017=c/2018=k
=>a=2016k; b=2017k; c=2018k
M=4(a-b)(b-c)(c-a)^2
=4*(2016k-2017k)(2017k-2018k)(2016k-2018k)^2
=4*(-k)*(-k)*(-2k)^2
=4k^2*4k^2=16k^4
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\Leftrightarrow a=b=c\)
Ta có: \(a-b=b-c=c-a=0\)
\(M=0\)