K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 nếu ta dùng cách rút gọn biểu thức thì ta có kết quả 

A=(8a-8)x2+(2a-2)x-15a+15

còn nếu sử dụng cách Phân tích thành nhân tử  thì ta  sẽ  có kết quả là 

A=(a-1)(2x+3)(4x-5)

(tự xét )

B  = (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)

= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y

hc tốt

tớ chỉ biết làm phần B thôi 

 B= (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)
= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y

phần A tương tự 

28 tháng 8 2019

Violympic toán 8

3 tháng 7 2018

Đề?

4 tháng 7 2018

chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến x

Bài 2:

a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)

\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)

\(\Leftrightarrow-12x^2-28x-60=0\)

\(\Leftrightarrow3x^2+7x+15=0\)

\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)

Do đó: Phương trình vô nghiệm

b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)

\(\Leftrightarrow16x^2=32\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: Ta có: \(49x^2+14x+1=0\)

=>\(\left(7x+1\right)^2=0\)

hay x=-1/7

12 tháng 4 2021

Đặt bthuc = A nhé

ĐKXĐ : \(2x\ne3y\)

\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)

\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)

\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)

Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3

2 tháng 8 2021

Trả lời:

1, A = 49 - 14x + x2 - y2 

= ( x2 - 14x + 49  ) - y2

= ( x - 7 )2 - y2

= ( x - 7 - y ) ( x - 7 + y )

Thay x = 1; y = - 2 vào A, ta có:

 A = [ 1 - 7 - ( - 2 ) ] [ 1 - 7 + ( - 2 ) ]

= ( - 4 ) ( - 8 )

= 32

2, B = 4x - 95 - 6y - 1 

Thay x = y = 2 vào B, ta có:

B = 4.2 - 95 - 6.2 - 1

= - 100

2 tháng 8 2021

\(A=49-14x+x^2-y^2=\left(x-7\right)^2-y^2=\left(x-7-y\right)\left(x-7+y\right)\)

Thay x = 1 ; y = -2 ta được : \(-4.\left(-8\right)=32\)

\(B=4x-95-6y-1\)

Thay x = y = 2 ta đươc : \(8-95-12-1=-116\)

1)

Thay x=1,y=-2 vào đa thức A có:

49-14.1+1^2+2^2

=49-14+1+4

=40

31 tháng 7 2021

=40 nha