Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(4a^2cos^260^o+2ab.cos^2180^o+\dfrac{4}{3}cos^230^o\)
\(=4a^2.\left(\dfrac{1}{2}\right)^2+2ab.\left(-1\right)^2+\dfrac{4}{3}.\left(\dfrac{\sqrt{3}}{2}\right)^2\)
\(=4a^2.\dfrac{1}{4}+2ab+\dfrac{4}{3}.\dfrac{3}{4}\)
\(=a^2+2ab+1\).
b)
\(\left(asin90^o+btan45^o\right)\left(acos0^o+bcos180^o\right)\)
\(=\left(a+b\right)\left(a-b\right)=a^2-b^2\).
a) \(\sin220^0< \sin10^0< \sin40^0< \sin90^0\)
b) \(\cos138^0< \cos90^0< \cos15^0< \cos0^0\)
\(1+\tan^2a=\dfrac{1}{\sin^2a}=1+\dfrac{1}{16}=\dfrac{17}{16}\)
\(\Leftrightarrow\sin^2a=\dfrac{16}{17}\)
\(\Leftrightarrow\cos^2a=\dfrac{1}{17}\)
\(A=2\cdot\sin^2a+\cos^2a=2\cdot\dfrac{16}{17}+\dfrac{1}{17}=\dfrac{33}{17}\)
1. Ta có: \(a-b+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge\dfrac{4}{b+1}\)
\(a+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge\dfrac{4}{b+1}+b\)(1)
lại có: \(\dfrac{4}{b+1}+b+1\ge4\)
\(\dfrac{4}{b+1}+b\ge3\)(2)
Từ (1),(2) ta có:\(a+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-b=\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\\b+1=\dfrac{4}{b+1}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
2. Ta có\(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3\)
\(\Leftrightarrow2a^3+1\ge12ab-12b^2\)
\(\Leftrightarrow2a^3+1-12ab+12b^2\ge0\)
\(\Leftrightarrow2a^3-3a^2+1+3\left(a-2b\right)^2\ge0\)
\(\Leftrightarrow\left(2a+1\right)\left(a-1\right)^2+3\left(a-2b\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-1=0\\a-2b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=\dfrac{1}{2}\end{matrix}\right.\)
a: \(=\dfrac{a^2-b^2}{\dfrac{\sqrt{2}}{2}a+b\cdot0-2a\cdot0}=\dfrac{a^2-b^2}{\dfrac{\sqrt{2}}{2}a}\)
b: \(=3a+b-a=2a+b\)