Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=202\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)
\(=202\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(=-202\left(1-\frac{1}{200^2}\right)\left(1-\frac{1}{199^2}\right)\left(1-\frac{1}{198^2}\right)...\left(1-\frac{1}{101^2}\right)\)
\(=-202\left(\frac{199.201}{200^2}\right).\left(\frac{198.200}{199^2}\right).\left(\frac{197.199}{198^2}\right)...\left(\frac{102.100}{101^2}\right)\)
\(=-202.\frac{199.201.198.200.197.199...100.102}{200^2.199^2.198^2...101^2}\)
\(=-202.\frac{\left(199.198.197...100\right)\left(201.200.199...102\right)}{\left(200.199.198...101\right)\left(200.199.198...101\right)}\)
\(=-202.\frac{1.201}{2.101}=-202.\frac{201}{202}=-201\)
Bài 3 :
Vì \(\left(x-2\right)^2\ge0\forall x\)
Nên : \(A=\left(x-2\right)^2-4\ge-4\forall x\)
Vậy \(A_{min}=-4\) khi x = 2
B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)
B2:
a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)
\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)
B3:
Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x = 2
Vậy GTNN của A = -4 khi x = 2
Áp dụng tính chất a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)
B =\(\left(200^{-2}-1\right)\left(199^{-2}-1\right)...\left(101^{-2}-1\right)=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(=\frac{1-200^2}{200^2}.\frac{1-199^2}{199^2}...\frac{1-101^2}{101^2}=\frac{1^2-200^2}{200^2}.\frac{1^2-199^2}{199^2}....\frac{1^2-101^2}{101^2}\)
\(=\frac{\left(1-200\right)\left(1+200\right)}{200^2}.\frac{\left(1-199\right)\left(1+199\right)}{199^2}...\frac{\left(1-101\right)\left(1+101\right)}{101^2}\)
\(=-\left(\frac{199.201}{200^2}.\frac{198.200}{199^2}...\frac{100.102}{101^2}\right)=-\frac{199.201.198.200..100.102}{200.200.199.199...101.101}\)
\(=-\frac{\left(199.198...100\right)\left(201.200...102\right)}{\left(200.199...101\right).\left(200.199...101\right)}=-\frac{100.201}{200.101}=-\frac{201}{202}\)
Bài giải
\(B=\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)
\(B=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(B=\left[\left(\frac{1}{200}\right)^2-1^2\right]\left[\left(\frac{1}{199}\right)^2-1^2\right]\left[\left(\frac{1}{198}\right)^2-1^2\right]...\left[\left(\frac{1}{101}\right)^2-1^2\right]\)
\(B=\left(\frac{1}{200}+1\right)\left(\frac{1}{200}-1\right)\left(\frac{1}{199}+1\right) \left(\frac{1}{199}-1\right)..\left(\frac{1}{101}-1\right)\left(\frac{1}{101}+1\right)\)
\(B=\frac{201}{200}\cdot\frac{-199}{200}\cdot\frac{200}{199}\cdot\frac{-198}{199}\cdot...\cdot\frac{-100}{101}\cdot\frac{102}{101}\)
\(B=\frac{201\cdot\left(-199\right)\cdot200\cdot\left(-198\right)\cdot...\cdot\left(-100\right)\cdot102}{200\cdot200\cdot199\cdot199\cdot...\cdot101\cdot101}=\frac{100\cdot201}{200\cdot101}=\frac{201}{202}\)
\(A=1.3+2.4+3.5+....+48.50\)
\(A=1.\left(1+2\right)+2.\left(3+1\right)+3.\left(4+1\right)+....+48.\left(49+1\right)\)
\(A=1.2+1+2.3+2+3.4+3+....+48.49+48\)
\(A\left(=1.2+2.3+...+48.49\right)+\left(1+2+...+48\right)\)
tự làm tiếp :))
p/s: ck iu :3
a) A = (200 - 1) . 201 = 200 . 201 - 201
B = (201-1) . 200 = 201.200 - 200
201 > 200 => 200.201 - 201 < 201.200 - 200
=> A < B
b) C = ( 34 + 1).53 - 18 = 34.53 + 53 - 18 = 34.53 + 35 = D
=> C = D
a ) ta có :
\(A=199.201=199\left(200+1\right)=199.200+199\)
\(B=200.200=200.\left(199+1\right)=199.200+200\)
Vì \(199.200+200>199.200+199\) nên \(B>A\)
b ) Ta có :
\(C=35.53-18=53.34+53-18=53.34+35=D\)
Vậy \(C=D\)
https://khoahoc.vietjack.com/question/661489/bieu-thuc-a-3-45-9-6-7-4-3-12-5-11-3-co-gia-tri-3-11