K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

x3+y3/32+1=(x+y)(x2-xy+y2)/10=3[(x2-2xy+y2)+xy]/10=3[(x+y)2-1]/10

thay  x+y=3 và xy=-1 thì

24/10=2,4

7 tháng 3 2021

Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)

\(\Leftrightarrow\left(x+y\right)=-1\)

Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)

Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)

Vậy A=4

7 tháng 3 2021

tks nguoi ae

\(\dfrac{1}{3}x^8+\dfrac{1}{4}x^2y+\dfrac{1}{6}xy^2+\dfrac{1}{27}y^3\)

\(=\left(\dfrac{1}{2}x\right)^3+3\cdot\left(\dfrac{1}{2}x\right)^2\cdot\dfrac{1}{3}y+3\cdot\dfrac{1}{2}x\cdot\dfrac{1}{9}y^2+\left(\dfrac{1}{3}y\right)^3\)

\(=\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^3\)

\(=\left(-4+2\right)^3=-8\)

30 tháng 1 2016

trong nâng cao và phát triển có

13 tháng 9 2023

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)