K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

sữa lại câu cuối cho Nhã Doanh

\(\sqrt{22-2\sqrt{21}-\sqrt{22+2\sqrt{21}}}=\sqrt{22-2\sqrt{21}-\sqrt{\left(\sqrt{21}+1\right)^2}}\)

\(=\sqrt{22-2\sqrt{21}-\sqrt{21}-1}=\sqrt{21-3\sqrt{21}}\)

29 tháng 7 2018

\(a.\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

\(b.\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)

\(c.\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)\(d.\sqrt{22-2\sqrt{21}-\sqrt{22+2\sqrt{21}}}=\sqrt{\left(\sqrt{21}-1\right)^2-\sqrt{\left(\sqrt{21}+1\right)^2}}=\sqrt{21}-1-\sqrt{\sqrt{21}+1}\)

a) Sửa đề: \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}\)

Ta có: \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{7+2\cdot\sqrt{7}\cdot1+1}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}\)

\(=\left|\sqrt{7}+1\right|-\sqrt{7}\)

\(=\sqrt{7}+1-\sqrt{7}\)

=1

b) Ta có: \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}\)

\(=\sqrt{4+2\cdot2\cdot\sqrt{3}+3}-2\sqrt{3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}\)

\(=\left|2+\sqrt{3}\right|-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}\)

\(=2-\sqrt{3}\)

c) Ta có: \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)

\(=\sqrt{13-2\cdot\sqrt{13}\cdot1+1}+\sqrt{13+2\cdot\sqrt{13}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)

\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)

\(=\sqrt{13}-1+\sqrt{13}+1\)

\(=2\sqrt{13}\)

d) Ta có: \(D=\sqrt{22-2\sqrt{21}}-\sqrt{22+2\sqrt{21}}\)

\(=\sqrt{21-2\cdot\sqrt{21}\cdot1+1}-\sqrt{21+2\cdot\sqrt{21}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{21}-1\right)^2}-\sqrt{\left(\sqrt{21}+1\right)^2}\)

\(=\left|\sqrt{21}-1\right|-\left|\sqrt{21}+1\right|\)

\(=\sqrt{21}-1-\left(\sqrt{21}+1\right)\)

\(=\sqrt{21}-1-\sqrt{21}-1\)

=-2

1 tháng 7 2021

a, đặt \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{2-\sqrt{3}}.\sqrt{2}.\left(\sqrt{3}+1\right)\)

\(=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)

\(b,\)

\(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}=\left[\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\right].\sqrt{10-2\sqrt{21}}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}\right)^2-2\sqrt{7.3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)

 

a) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=3-1=2

b) Ta có: \(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=4\sqrt{7}\)

25 tháng 9 2021

1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)

3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)

5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)

7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

4 tháng 8 2016

a)\(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)

\(=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)

b)\(\left(7+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)

\(=\left(7+\sqrt{14}\right)\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)\)

\(=\sqrt{7}\left(7-2\right)=5\sqrt{7}\)

 

4 tháng 8 2016

giup minh voi minh can gap lam ok

a: \(=6-\sqrt{15}+2\sqrt{15}=6+\sqrt{15}\)

b: \(=\left(\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)

\(=7-2\sqrt{21}+2\sqrt{21}=7\)

c: \(=10+5\sqrt{10}-5\sqrt{10}=10\)

d: \(=22-\sqrt{198}+\sqrt{198}=22\)

a: \(=\left(2\sqrt{7}+\sqrt{7}+2\sqrt{14}\right)\cdot\sqrt{7}-\left(51+14\sqrt{2}\right)\)

\(=3\sqrt{7}\cdot\sqrt{7}+2\sqrt{14}\cdot\sqrt{7}-51-14\sqrt{2}\)

\(=21-51=-30\)

b: \(=\dfrac{\sqrt{10}}{2}+\dfrac{\sqrt{10}-\sqrt{6}}{2}=\dfrac{2\sqrt{10}-\sqrt{6}}{2}\)

c: \(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\sqrt{5}+\sqrt{3}}+\dfrac{\left(\sqrt{5}-\sqrt{2}\right)^2}{\sqrt{5}-\sqrt{2}}\)

\(=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{2}\)

\(=2\sqrt{5}+\sqrt{3}-\sqrt{2}\)