Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề :
\(A=\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2004}}\)
\(2A-A=\left(1+2+\frac{1}{2}+...+\frac{1}{2^{2004}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2005}}\right)\)
\(A=2-\frac{1}{2^{2005}}\)
Ta có công thức :
Với mọi n thuộc N thì :
\(1^2+2^2+3^2+.......+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Áp dụng vào bài toán ta được :
\(A=1^2+2^2+3^2+....+20^2=\frac{20\left(20+1\right)\left(2.20+1\right)}{6}=2870\)
Câu này mình vừa mới giúp bạn ở bên trên đấy.Bạn xem lại nhé!
Đặt A=(1/2)^0+(1/2)^1+(1/2)^2+.............+(1/2)^20
suy ra 1/2A=(1/2)^1+(1/2)^2+(1/2)^3+..........+(1/2)^21
suy ra A-1/2A=[(1/2)^0+(1/2)^1+(1/2)^2+........+(1/2)^20]-[(1/2)^1+(1/2)^2+(1/2)^3+.........+(1/2)^21]
suy ra 1/2A=(1/2)^0-(1/2)^21
1/2A=1-(1/2)^21
A=[1-(1/2)^21]:1/2
A=[1-(1/2)^21].2
A=2-(1/2)^21.2
A=2-(1/2)^20
\(A=\frac{2}{1+2}+\frac{2+3}{1+2+3}+...+\frac{2+3+...+20}{1+2+3+...+20}\)
\(A=\frac{2}{3}+\frac{5}{6}+...+\frac{209}{210}\)
\(A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{210}\right)\)
\(A=\left(1+1+....+1\right)\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{210}\right)\)
\(A=19-\left(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{420}\right)\)
\(A=19-\left(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\right)\)
\(A=19-2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(A=19-2\cdot\left(\frac{1}{2}-\frac{1}{21}\right)\)
\(A=19-2\cdot\frac{19}{42}=19-\frac{19}{21}=\frac{380}{21}\)
Vậy A= \(\frac{380}{21}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2005}\right)\left(1-\frac{1}{2006}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2004}{2005}\cdot\frac{2005}{2006}\)
\(B=\frac{1\cdot2\cdot...\cdot2004\cdot2005}{2\cdot3\cdot...\cdot2005\cdot2006}\)
\(B=\frac{1}{2006}\)
Vậy \(B=\frac{1}{2006}\)