Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
****
\(a=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(a=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(a=1-\frac{1}{100}\)
\(a=\frac{99}{100}\)
Ta có : \(\left(1+\frac{1}{100}\right).\left(1+\frac{1}{99}\right).......\left(1+\frac{1}{3}\right)\left(1+\frac{1}{2}\right)\)
\(=\frac{101}{100}.\frac{100}{99}.\frac{99}{98}......\frac{4}{3}.\frac{3}{2}=\frac{101}{2}\)
\(\left(1+\frac{1}{100}\right).\left(1+\frac{1}{99}\right).....\left(1+\frac{1}{3}\right).\left(1+\frac{1}{2}\right)\)
\(=\frac{101}{100}.\frac{100}{99}.....\frac{4}{3}.\frac{3}{2}=\frac{101}{2}\)