K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Ta có : \(\left(1+\frac{1}{100}\right).\left(1+\frac{1}{99}\right).......\left(1+\frac{1}{3}\right)\left(1+\frac{1}{2}\right)\)

\(=\frac{101}{100}.\frac{100}{99}.\frac{99}{98}......\frac{4}{3}.\frac{3}{2}=\frac{101}{2}\)

25 tháng 6 2017

\(\left(1+\frac{1}{100}\right).\left(1+\frac{1}{99}\right).....\left(1+\frac{1}{3}\right).\left(1+\frac{1}{2}\right)\)

\(=\frac{101}{100}.\frac{100}{99}.....\frac{4}{3}.\frac{3}{2}=\frac{101}{2}\)

16 tháng 8 2016

Là a chia cho hay a là đấy

16 tháng 8 2016

la a chi cho do ban

29 tháng 7 2017

\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

29 tháng 7 2017

\(=\frac{99}{100}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

30 tháng 7 2015

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(1-\frac{1}{100}\)

\(\frac{99}{100}\)

30 tháng 7 2015

\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

1 tháng 8 2015

a = 99/100 

1 tháng 8 2015

99/100.         

25 tháng 8 2015

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

20 tháng 8 2015

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

6 tháng 8 2015

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

****

6 tháng 8 2015

\(a=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)

\(a=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(a=1-\frac{1}{100}\)

\(a=\frac{99}{100}\)