Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)+...+\(\frac{1}{1+2+3+4...+2014}\)
\(\Rightarrow A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2029105}\)
\(\Rightarrow2A=2\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2029105}\right)\)
\(\Rightarrow2A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{4058210}\)
\(\Rightarrow2A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{2015}\)
\(\Rightarrow2A=\frac{2013}{4030}\)
\(\Rightarrow A=\frac{2013}{8060}\)
ngài Kiệt ღ ๖ۣۜLý๖ۣۜ đúng là không ái sánh bằng sự gian xảo này
Bài 1: Tính giá trị các biểu thức:
1) \(A=\frac{2}{3}.\frac{2014}{2013}-\frac{2}{3}.\frac{1}{2013}+\frac{1}{3}\)
\(=\frac{2}{3}.\left(\frac{2014}{2013}-\frac{1}{2013}\right)+\frac{1}{3}\)
\(=\frac{2}{3}.1+\frac{1}{3}\)
= 1
Áp dụng công thức:
\(1+2+...+n=\frac{n\left(n+1\right)}{2}\) thì được
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2009}\)
\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{2009.2010}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2009.2010}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)=\frac{1004}{1005}\)
thôi, làm luôn nè
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2009}\)
\(=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+2009\right).2009:2}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2009.2010}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}\right)+2.\left(\frac{1}{3}-\frac{1}{4}\right)+2.\left(\frac{1}{4}-\frac{1}{5}\right)+...+2.\left(\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
\(2M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2M-M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{10}}\)
\(=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}\)
2M=1+1/2+1/2^2+...+1/2^9
M=2M-M= 1/2-1/2^10(triệt tiêu mấy cái giống nhau nha)
M=(2^9-1)/2^10
Nè :33
B=2013.(1+
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)
B=2013(\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2012.2013}\)
B=2013.2(\(1\frac{1}{2013}=2013.2.\frac{2012}{2013}=4024\)
mình cũng bít làm bài đó
\(A=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)
\(2A=2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)
\(2A-A=\left(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\left(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)
\(A=1+\frac{1}{2}-\frac{1}{2^{2014}}\)
\(A=\frac{2^{2014}}{2^{2014}}+\frac{2^{2013}}{2^{2014}}-\frac{1}{2^{2014}}\)
\(A=\frac{2^{2014}+2^{2013}-1}{2^{2014}}\)
Tham khảo nhé~