K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

mình cũng bít làm bài đó

14 tháng 8 2018

\(A=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)

\(2A=2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)

\(2A-A=\left(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\left(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)

\(A=1+\frac{1}{2}-\frac{1}{2^{2014}}\)

\(A=\frac{2^{2014}}{2^{2014}}+\frac{2^{2013}}{2^{2014}}-\frac{1}{2^{2014}}\)

\(A=\frac{2^{2014}+2^{2013}-1}{2^{2014}}\)

Tham khảo nhé~

25 tháng 6 2016

A =\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)+...+\(\frac{1}{1+2+3+4...+2014}\)

\(\Rightarrow A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2029105}\)

\(\Rightarrow2A=2\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2029105}\right)\)

\(\Rightarrow2A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{4058210}\)

\(\Rightarrow2A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{2015}\)

\(\Rightarrow2A=\frac{2013}{4030}\)

\(\Rightarrow A=\frac{2013}{8060}\)

1 tháng 7 2016

ngài Kiệt ღ ๖ۣۜLý๖ۣۜ   đúng là không ái sánh bằng sự gian xảo này

30 tháng 7 2017

A=2/3.(2014/2013-1/2013)+1/3=2/3.1+1/3=3/3=1

30 tháng 7 2017

Bài 1: Tính giá trị các biểu thức:

 1) \(A=\frac{2}{3}.\frac{2014}{2013}-\frac{2}{3}.\frac{1}{2013}+\frac{1}{3}\)

\(=\frac{2}{3}.\left(\frac{2014}{2013}-\frac{1}{2013}\right)+\frac{1}{3}\)

\(=\frac{2}{3}.1+\frac{1}{3}\)

= 1

31 tháng 5 2017

Áp dụng công thức: 

\(1+2+...+n=\frac{n\left(n+1\right)}{2}\) thì được

\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2009}\)

\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{2009.2010}{2}}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2009.2010}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)=\frac{1004}{1005}\)

31 tháng 5 2017

thôi, làm luôn nè

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2009}\)

\(=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+2009\right).2009:2}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2009.2010}\)

\(=2.\left(\frac{1}{2}-\frac{1}{3}\right)+2.\left(\frac{1}{3}-\frac{1}{4}\right)+2.\left(\frac{1}{4}-\frac{1}{5}\right)+...+2.\left(\frac{1}{2009}-\frac{1}{2010}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(=2.\frac{502}{1005}\)

\(=\frac{1004}{1005}\)

13 tháng 3 2022

\(2M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(2M-M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{10}}\)

\(=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}\)

13 tháng 3 2022

2M=1+1/2+1/2^2+...+1/2^9

M=2M-M= 1/2-1/2^10(triệt tiêu mấy cái giống nhau nha)

M=(2^9-1)/2^10

Nè :33

19 tháng 3 2018

óc chó      c hó

19 tháng 3 2018

B=2013.(1+

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)

B=2013(\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2012.2013}\)

B=2013.2(\(1\frac{1}{2013}=2013.2.\frac{2012}{2013}=4024\)