K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 6 2021

Lời giải:

Tại $x=4$ thì:

\(A=5(x^5-x^4+x^3-x^2+x-1)-1\)

\(=(x+1)(x^5-x^4+x^3-x^2+x-1)-1=x^6+1-1=x^6\)

\(=4^6=4096\)

3 tháng 9 2018

\(A=x^5-5x^4+5x^3-5x^2+5x-6\)

\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x-2\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)

\(=-2\)

5 tháng 9 2018

\(A=x^5-5x^4+5x^3-5x^2+5x-6\)

\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x-2\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)

\(=-2\)

3 tháng 6 2021

x = 4

=> x + 1 = 5

Khi đó A = x5 - 5x4 + 5x3 - 5x2 + 5x - 1 

= x5 - (x + 1)x4 + (x + 1)x3 - (x + 1)x2 + (x + 1)x - 1

= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 1 

= x - 1 

= 4 - 1 = 3 

3 tháng 6 2021

Thay \(x=4\)vào biểu thức A ta có:

\(A=4^5-5.4^4+5.4^3-5.4^2+5.4-1\)

\(=1024-5.256+5.64-5.16+20-1\)

\(=1024-1280+320-80+20-1\)

\(=3\)

Vậy giá trị của biểu thức A khi x =4 là 3

19 tháng 8 2018

A = x5 - 5x4 + 5x3 - 5x2 + 5x -1

A = x5 - ( 4 + 1 ) x4 + ( 4 + 1 ) x3 - ( 4 + 1 ) x2 + ( 4 + 1 )x - 1

Thay 4= x vào biểu thức A , ta đc :

A= x5 - ( x + 1 ) x4 + ( x + 1 ) x3 - ( x + 1 ) x2 + ( x + 1 )x - 1

A= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x -1

A= x - 1

Thay x = 4 vào biểu thức A, ta đc

A= 4 - 1

A= 4

b, B= x2006 - 8x2005 + 8x2004 - .... + 8x2 - 8x -5

B= x2006 - ( 7 + 1 ) x2005 + ( 7 + 1 ) x2004 - .......+ ( 7 + 1 ) x2 - ( 7 + 1 ) x - 5

Thay 7 = x vào biểu thức B ta đc

B= x2006 - ( x + 1 ) x2005 + ( x + 1 )x2004 - ......+ ( x + 1 ) x2 + ( x + 1 )x - 5

B = x2006 - x2006 - x2005 + x2005 + x2004 - .....+ x3 - x2 + x2 + x - 5

B= x - 5

Thay x = 7 vào biểu thức B, ta đc:

B = 7 - 5

B = 2

( PCY ❤ )

5 tháng 9 2018

\(A=x^5-5x^4+5x^3-5x^2+5x-1\)

\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)

\(=3\)

5 tháng 9 2018

\(A=x^5-5x^4+5x^3-5x^2+5x-1\)

\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)

\(=3\)

Ta có : 

\(A=x^5-5x^4+5x^3-5x^2+5x-1\)

\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x+3\)

\(A=3\)

P/s tham khảo nha 

hok tốt