Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1999\cdot2001-1}{1998+1999\cdot2000}\cdot\frac{7}{5}\)
\(=\frac{1999\cdot\left(2000+1\right)-1}{1998+1999\cdot2000}\cdot\frac{7}{5}\)
\(=\frac{1999\cdot2000+1999-1}{1998+1999.2000}\cdot\frac{7}{5}\)
\(=\frac{1999\cdot2000+1998}{1998+1999.2000}\cdot\frac{7}{5}=1\cdot\frac{7}{5}=\frac{7}{5}\)
\(\frac{\left(16-8:5\right)x177}{199x2001}\frac{\left(16-16\right)x177}{199x2001}=\frac{0x177}{199x2001}=\frac{0}{199x2001}=0\)
\(M=1+\frac{1}{199}+1+\frac{2}{198}+1+....+\frac{198}{2}+1=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+....+\frac{200}{2}\)
\(=200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)=200 T
\(S=\frac{T}{200T}=\frac{1}{200}\)
\(\frac{1999.2001-1}{1998+1999.2000}=\frac{1999.2001-\left(1999-1998\right)}{1998+1999.2000}=\frac{1999.2001-1999+1998}{1998+1999.2000}=\frac{1999.\left(20001-1\right)+1998}{1998+1999.2000}=\frac{1999.2000+1998}{1998+1999.2000}=1\)=> đáp án là 7/5
b) \(\frac{1}{1000}+\frac{13}{1000}+\frac{25}{1000}+...+\frac{87}{1000}+\frac{99}{1000}\)
\(=\frac{1+13+25+...+85+97}{1000}=\frac{\left(97+1\right).\left[\left(97-1\right):12+1\right]:2}{1000}\)
\(=\frac{49.9}{1000}=\frac{441}{1000}.\) ( Đề bài sai nhé bạn tử số : 1; 13; 25; 37; 49 ; 61; 73; 85 ; 97. )
b) \(\frac{1}{5}:\frac{1}{3}\cdot\frac{\frac{1}{3}}{\frac{1}{5}}+1996\)
\(=\frac{3}{5}\cdot\left(\frac{1}{3}:\frac{1}{5}\right)+1996\)
\(=\frac{3}{5}\cdot\frac{5}{3}+1996\)
\(=1+1996=1997\)
a) \(\frac{2}{3}:\frac{5}{7}\cdot\frac{5}{7}\cdot\frac{2}{3}+1934\)
\(=\frac{2\cdot7}{5\cdot3}\cdot\frac{5\cdot2}{7\cdot3}+1934\)
\(=\frac{2\cdot7\cdot5\cdot2}{5\cdot3\cdot7\cdot3}+1996=\frac{4}{9}+1996\)
\(\frac{6:\frac{3}{5}-1\frac{1}{6}\cdot\frac{6}{7}}{4\frac{1}{5}\cdot\frac{10}{11}+5\frac{2}{11}}=1\)
\(\frac{1999.2001-1}{1998.1999.2000}.\frac{7}{5}:\frac{14}{15}\)=\(\frac{1.7.15}{1998.5.14}=\frac{1.1.3}{1998.1.2}=\frac{3}{3996}=\frac{1}{1332}\)
\(A=\frac{1999\times\left(2000+1\right)-1}{1998\times1999\times2000}\times\frac{7}{5}\times\frac{15}{14}=\frac{1999\times2000+1999-1}{1998\times1999\times2000}\times\frac{7}{5}\times\frac{5\times3}{7\times2}\)
\(A=\frac{1999\times2000+1998}{1998\times1999\times2000}\times\frac{3}{2}=\frac{3999998\times3}{3\times666\times1999\times2000\times2}=\frac{1999999\times2}{666\times1999\times2000\times2}=\frac{1999999}{666\times1999\times2000}=...\)
Em xem lại đề: có thể đề là:
A = \(\frac{1999\times2001-1}{1998+1999\times2000}\times\frac{7}{5}:\frac{14}{15}\)= \(\frac{1999\times2000+1999-1}{1998\times1999\times2000}\times\frac{7}{5}\times\frac{5\times3}{7\times2}\)= \(\frac{1999\times2000+1998}{1998+1999\times2000}\times\frac{3}{2}=1\times\frac{3}{2}=\frac{3}{2}\)
\(=\frac{199.2000+199-1}{1998+1999.2000}.\frac{7}{5}\)
\(=\frac{199.2-1}{1998-1999}.\frac{7}{5}\)
\(=\frac{398-1}{-1}.\frac{7}{5}\)
\(=\frac{397}{-1}.\frac{7}{5}\)
\(=-397.\frac{7}{5}\)
\(=-555,8\)
Hình như sai đề