Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/5.7 + 1/7.9 + 1/9.11 + ... + 1/49.51
= 1/2 . (2/5.7 + 2/7.9 + 2/9.11 + ... + 2/49.51)
= 1/2 . (1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1/49 - 1/51)
= 1/2 . (1/5 - 1/51)
= 1/2 . 46/255
= 23/255
S = \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...\frac{1}{49}-\frac{1}{51}\)
S = \(\frac{1}{5}-\frac{1}{51}=\frac{46}{255}\)
\(M=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(M=\frac{1}{3}-\frac{1}{13}\)
\(M=\frac{10}{39}\)
\(M=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(M=\frac{1}{2}.\frac{10}{39}\)
\(M=\frac{5}{39}\)
tk mk nha bn
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
=\(\frac{1}{2}x\left(\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}+...+\frac{2}{2015x2017}\right)\)
=\(\frac{1}{2}x\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
=\(\frac{1}{2}x\left(\frac{1}{5}-\frac{1}{2017}\right)\)
=\(\frac{1}{2}x\frac{2012}{10085}\)
=\(\frac{1006}{10085}\)
Bạn gõ lại đề đi :v
Đọc chả hiểu đề gì cả ... đề k có x
Mà phía dưới có cái đáp số x= ... là sao ??
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
Tính :
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\Rightarrow\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{5}{15}-\frac{1}{15}\right)=\frac{1}{2}.\frac{4}{15}=\frac{2}{15}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
=\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
=\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}.\frac{4}{15}=\frac{2}{15}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}\)
\(=\frac{10}{11}\)
\(Q=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\)\(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{3}-\frac{1}{11}=\frac{8}{33}\)
\(Q=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(Q=\frac{1}{3}+0+0+0-\frac{1}{11}\)
\(Q=\frac{11}{33}-\frac{3}{33}=\frac{8}{33}\)
\(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{5}.7+\frac{2}{7}.9+\frac{2}{9}.11+...+\frac{2}{49}.51\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{46}{255}\)
\(=\frac{23}{255}\)
\(\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
\(\Rightarrow2 \left(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{49.51}\right)\)
\(\Rightarrow\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{49}-\frac{1}{51}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{51}=\frac{46}{255}\)
Vì biểu thức đã được nhân 2 nên giá trị của biểu thức là:
\(\frac{46}{255}:2=\frac{23}{255}\)